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Abstract

We develop a fully discriminative learning approach for supervised Latent Dirich-
let Allocation (LDA) model using Back Propagation (i.e., BP-sLDA), which max-
imizes the posterior probability of the prediction variable given the input doc-
ument. Different from traditional variational learning or Gibbs sampling ap-
proaches, the proposed learning method applies (i) the mirror descent algorithm
for maximum a posterior inference and (ii) back propagation over a deep architec-
ture together with stochastic gradient/mirror descent for model parameter estima-
tion, leading to scalable and end-to-end discriminative learning of the model. As
a byproduct, we also apply this technique to develop a new learning method for
the traditional unsupervised LDA model (i.e., BP-LDA). Experimental results on
three real-world regression and classification tasks show that the proposed meth-
ods significantly outperform the previous supervised topic models, neural net-
works, and is on par with deep neural networks.

1 Introduction

Latent Dirichlet Allocation (LDA) [5], among various forms of topic models, is an important prob-
abilistic generative model for analyzing large collections of text corpora. In LDA, each document is
modeled as a collection of words, where each word is assumed to be generated from a certain topic
drawn from a topic distribution. The topic distribution can be viewed as a latent representation of
the document, which can be used as a feature for prediction purpose (e.g., sentiment analysis). In
particular, the inferred topic distribution is fed into a separate classifier or regression model (e.g.,
logistic regression or linear regression) to perform prediction. Such a separate learning structure
usually significantly restricts the performance of the algorithm. For this purpose, various supervised
topic models have been proposed to model the documents jointly with the label information. In
[4], variational methods was applied to learn a supervised LDA (sLDA) model by maximizing the
lower bound of the joint probability of the input data and the labels. The DiscLDA method devel-
oped in [15] learns the transformation matrix from the latent topic representation to the output in a
discriminative manner, while learning the topic to word distribution in a generative manner similar
to the standard LDA. In [26], max margin supervised topic models are developed for classifica-
tion and regression, which are trained by optimizing the sum of the variational bound for the log
marginal likelihood and an additional term that characterizes the prediction margin. These methods
successfully incorporate the information from both the input data and the labels, and showed better
performance in prediction compared to the vanilla LDA model.

One challenge in LDA is that the exact inference is intractable, i.e., the posterior distribution of the
topics given the input document cannot be evaluated explicitly. For this reason, various approximate



Figure 1: Graphical representation of the supervised LDA model. Shaded nodes are observables.

inference methods are proposed, such as variational learning [4, 5, 26] and Gibbs sampling [9, 27],
for computing the approximate posterior distribution of the topics. In this paper, we will show that,
although the full posterior probability of the topic distribution is difficult, its maximum a posteriori
(MAP) inference, as a simplified problem, is a convex optimization problem when the Dirichlet pa-
rameter satisfies certain conditions, which can be solved efficiently by the mirror descent algorithm
(MDA) [2, 18, 21]. Indeed, Sontag and Roy [19] pointed out that the MAP inference problem of
LDA in this situation is polynomial-time and can be solved by an exponentiated gradient method,
which shares a same form as our mirror-descent algorithm with constant step-size. Nevertheless,
different from [19], which studied the inference problem alone, our focus in this paper is to in-
tegrate back propagation with mirror-descent algorithm to perform fully discriminative training of
supervised topic models, as we proceed to explain below.

Among the aforementioned methods, one training objective of the supervised LDA model is to max-
imize the joint likelihood of the input and the output variables [4]. Another variant is to maximize
the sum of the log likelihood (or its variable bound) and a prediction margin [26, 27]. Moreover,
the DiscLDA optimizes part of the model parameters by maximizing the marginal likelihood of the
input variables, and optimizes the other part of the model parameters by maximizing the condi-
tional likelihood. For this reason, DiscLDA is not a fully discriminative training of all the model
parameters. In this paper, we propose a fully discriminative training of all the model parameters by
maximizing the posterior probability of the output given the input document. We will show that the
discriminative training can be performed in a principled manner by naturally integrating the back-
propagation with the MDA-based exact MAP inference. To our best knowledge, this paper is the
first work to perform a fully end-to-end discriminative training of supervised topic models. Dis-
criminative training of generative model is widely used and usually outperforms standard generative
training in prediction tasks [3, 7, 12, 14, 25]. As pointed out in [3], discriminative training increases
the robustness against the mismatch between the generative model and the real data. Experimental
results on three real-world tasks also show the superior performance of discriminative training.

In addition to the aforementioned related studies on topic models [4, 15, 26, 27], there have been
another stream of work that applied empirical risk minimization to graphical models such as Markov
Random Field and nonnegative matrix factorization [10, 20]. Specifically, in [20], an approximate
inference algorithm, belief propagation, is used to compute the belief of the output variables, which
is further fed into a decoder to produce the prediction. The approximate inference and the decoder
are treated as an entire black-box decision rule, which is tuned jointly via back propagation. Our
work is different from the above studies in that we use an MAP inference based on optimization
theory to motivate the discriminative training from a principled probabilistic framework.

2 Smoothed Supervised LDA Model

We consider the smoothed supervised LDA model in Figure 1. Let K be the number of topics,
N be the number of words in each document, V' be the vocabulary size, and D be the number of
documents in the corpus. The generative process of the model in Figure 1 can be described as:

1. For each document d, choose the topic proportions according to a Dirichlet distribution:
04 ~ p(f4]a) = Dir(«), where ais a K x 1 vector consisting of nonnegative components.

2. Draw each column ¢y, of a V' x K matrix ® independently from an exchangeable Dirichlet
distribution: ¢y, ~ Dir(8) (i.e., ® ~ p(P|B)), where 3 > 0 is the smoothing parameter.

3. To generate each word wg ,,:



(a) Choose a topic zq,, ~ p(24.n|04) = Multinomial(6,). !
(b) Choose a word wq,, ~ P(Wd,n|%d,n, ®) = Multinomial(¢., , ).

4. Choose the C' x 1 response vector: yq ~ p(yql0, U, 7).

(a) Inregression, p(yq|04,U,v) = N(UB4,v~ 1), where U is a C' x K matrix consisting
of regression coefficients.
(b) In multi-class classification, p(yq4|6a, U,~) = Multinomial (Softmax(yU#6,)), where

e’c

the softmax function is defined as Softmax(x). = so—c=1,..., C.
=1¢°

Therefore, the entire model can be described by the following joint probability
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where wq,1.x and z41.v denotes all the words and the associated topics, respectively, in the d-th
document. Note that the model in Figure 1 is slightly different from the one proposed in [4], where
the response variable y4 in Figure 1 is coupled with 64 instead of z4,1. 5 as in [4]. Blei and Mcauliffe
also pointed out this choice as an alternative in [4]. This modification will lead to a differentiable
end-to-end cost trainable by back propagation with superior prediction performance.

To develop a fully discriminative training method for the model parameters ® and U, we follow the
argument in [3], which states that the discriminative training is also equivalent to maximizing the
joint likelihood of a new model family with an additional set of parameters:
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where p(wd71:N|<i>, «) is obtained by marginalizing p(yq4, 04, wa,1:N, 24,1:58|®, U, @, 7y) in (1) and
replace ® with ®. The above problem (2) decouples into
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which are the discriminative learning problem of supervised LDA (Eq. (3)), and the unsupervised
learning problem of LDA (Eq. (4)), respectively. We will show that both problems can be solved in
a unified manner using a new MAP inference and back propagation.

3 Maximum A Posterior (MAP) Inference

We first consider the inference problem in the smoothed LDA model. For the supervised case, the
main objective is to infer yq given the words wgy, 1.y in each document d, i.e., computing

p(yd‘wd,lzNacI)aUyaa'Y):/ P(yalba, U,7)p(0alwa.n, P, a)dby )
0a

where the probability p(yq|€4, U, ) is known (e.g., multinomial or Gaussian for classification and
regression problems — see Section 2). The main challenge is to evaluate p(64|wq 1.5, P, ), i.e.,
infer the topic proportion given each document, which is also the important inference problem in
the unsupervised LDA model. However, it is well known that the exact evaluation of the posterior
probability p(64|wa,1:n, P, ) is intractable [4, 5, 9, 15, 26, 27]. For this reason, various approx-
imate inference methods, such as variational inference [4, 5, 15, 26] and Gibbs sampling [9, 27],

"We will represent all the multinomial variables by a one-hot vector that has a single component equal to
one at the position determined by the multinomial variable and all other components being zero.



have been proposed to compute the approximate posterior probability. In this paper, we take an
alternative approach for inference; given each document d, we only seek a point (MAP) estimate
of 0,4, instead of its full (approximate) posterior probability. The major motivation is that, although
the full posterior probability of 6, is difficult, its MAP estimate, as a simplified problem, is more
tractable (and it is a convex problem under certain conditions). Furthermore, with the MAP estimate
of 84, we can infer the prediction variable y4 according to the following approximation from (5):

p(yd|wd,1:Na (I)7 U7 «, 7) = ]Eﬁd|’wd,1:N [p(yd|€d7 U7 ’7)] ~ p(yd|9d\wd‘1;N7 U7 ’7) (6)
where g, ., ,., denotes the conditional expectation with respect to 4 given wgy 1.y, and the ex-

pectation is sampled by the MAP estimate, éd‘ of 0, given wq 1., defined as

Wq,1:N
Odjwa i = argﬁbaxp(edlwd,hjv,‘b,a,ﬁ) @)
d

The approximation gets more precise when p(6g|wgq1.n, P, a, 5) becomes more concentrated
around 9d|w 41~ Experimental results on several real datasets (Section 5) show that the approx-
imation (6) provides excellent prediction performance.

Using the Bayesian rule p(64|wq1.nv, P, ) = p(fala)p(wa,1:n510a, P)/p(wa,1:n|P, o) and the fact
that p(wg,1.~|®, &) is independent of 6,4, we obtain the equivalent form of (7) as

éd\wd,lw = arg QE%%DXK [lnp(9d|a) + Inp(wa,1:n5194, <I>)] (8)

where Px = {0 € RE : 0; > O,Zjil 6; = 1} denotes the (K — 1)-dimensional probability
simplex, p(64|c) is the Dirichlet distribution, and p(wg,1.n5|04, P) can be computed by integrating

p(Wa,1:N, Zd,1:N104, D) = Hﬁ;l o( @)p(24,n|04) OVer z41.n, which leads to (derived in
Section A of the supplementary material)

d,v
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where 4, denotes the term frequency of the v-th word (in vocabulary) inside the d-th document,
and x4 denotes the V'-dimensional bag-of-words (BoW) vector of the d-th document. Note that
p(wq,1:n |04, ®) depends on wy 1.5 only via the BoW vector x4, which is the sufficient statistics.
Therefore, we use p(xq|0q, ?) and p(wg,1.n:|04, ) interchangeably from now on. Substituting the
expression of Dirichlet distribution and (9) into (8), we get

éd|wd71:N = arg max [z} In(®04) + (o — 1)" In 6]

= arg min [ — 2l In(®0y) — (a —1)T In Gd} (10)
04€PK
where we dropped the terms independent of 64, and 1 denotes an all-one vector. Note that when
a > 1 (a > 1), the optimization problem (10) is (strictly) convex and is non-convex otherwise.

3.1 Mirror Descent Algorithm for MAP Inference

An efficient approach to solving the constrained optimization problem (10) is the mirror descent
algorithm (MDA) with Bregman divergence chosen to be generalized Kullback-Leibler divergence
[2, 18, 21]. Specifically, let f(64) denote the cost function in (10), then the MDA updates the MAP
estimate of 0 iteratively according to:

040 = arg min |:f(9d,€1) + Vo, fOae—1)]" (0a — Oae—1) + U (0q,04,0-1) (11)

1
04€PK Tae
04.¢ denotes the estimate of 64 ¢ at the ¢-th iteration, Ty , denotes the step-size of MDA, and ¥ (z, y)
is the Bregman divergence chosen to be ¥(x,%y) = 27 In(x/y) — 172 + 17y. The argmin in (11)

can be solved in closed-form (see Section B of the supplementary material) as

1 T4 a—1 1
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Figure 2: Layered deep architecture for computing p(yq|wq 1:n, ®, U, o, y), where ()/() denotes
element-wise division, ® denotes Hadamard product, and exp() denotes element-wise exponential.

where Cjy is a normalization factor such that 8, , adds up to one, ® denotes Hadamard product, L is
the number of MDA iterations, and the divisions in (12) are element-wise operations. Note that the
recursion (12) naturally enforces each 64 ¢ to be on the probability simplex. The MDA step-size Tg ¢
can be either constant, i.e., Tg, = T, or adaptive over iterations and samples, determined by line
search (see Section C of the supplementary material). The computation complexity in (12) is low
since most computations are sparse matrix operations. For example, although by itself ®0; ,_; in
(12) is a dense matrix multiplication, we only need to evaluate the elements of ®, ,_; at the posi-
tions where the corresponding elements of 4 are nonzero, because all other elements of x4 /P64 ¢—1
is known to be zero. Overall, the computation complexity in each iteration of (12) is O(nTok - K),
where nTok denotes the number of unique tokens in the document. In practice, we only use a small

number of iterations, L, in (12) and use 4,1, to approximate édm 4.1, SO that (6) becomes

p(yd|wd,1;N,(I),U,Oé,’}/) %p(yd|0d,LvU7 ’Y) (13)
In summary, the inference of 6,4 and y, can be implemented by the layered architecture in Figure 2,
where the top layer infers y4 using (13) and the MDA layers infer 6, iteratively using (12). Figure 2
also implies that the the MDA layers act as a feature extractor by generating the MAP estimate 6, 1,
for the output layer. Our end-to-end learning strategy developed in the next section jointly learns the
model parameter U at the output layer and the model parameter ® at the feature extractor layers to
maximize the posterior of the prediction variable given the input document.

4 Learning by Mirror-Descent Back Propagation

We now consider the supervised learning problem (3) and the unsupervised learning problem (4),
respectively, using the developed MDA-based MAP inference. We first consider the supervised
learning problem. With (13), the discriminative learning problem (3) can be approximated by
D

arg min Inp(®|B) dzllnp(ydwd,L,U, v) (14)
which can be solved by stochastic mirror descent (SMD). Note that the cost function in (14) depends
on U explicitly through p(yq|€4,r,U, ), which can be computed directly from its definition in
Section 2. On the other hand, the cost function in (14) depends on ® implicitly through 64 ;. From
Figure 2, we observe that 6, ;, not only depends on ® explicitly (as indicated in the MDA block on
the right-hand side of Figure 2) but also depends on ® implicitly via 84,7, —1, which in turn depends
on ® both explicitly and implicitly (through 04 7_2) and so on. That is, the dependency of the
cost function on @ is in a layered manner. Therefore, we devise a back propagation procedure to
efficiently compute its gradient with respect to ® according to the mirror-descent graph in Figure
2, which back propagate the error signal through the MDA blocks at different layers. The gradient
formula and the implementation details of the learning algorithm can be found in Sections C-D in
the supplementary material.

For the unsupervised learning problem (4), the gradient of In p(®|3) with respect to ® assumes the
same form as that of In p(®|3). Moreover, it can be shown that the gradient of In p(wg 1.5|®, a, )















