NIPS Proceedingsβ

Is Approval Voting Optimal Given Approval Votes?

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Some crowdsourcing platforms ask workers to express their opinions by approving a set of k good alternatives. It seems that the only reasonable way to aggregate these k-approval votes is the approval voting rule, which simply counts the number of times each alternative was approved. We challenge this assertion by proposing a probabilistic framework of noisy voting, and asking whether approval voting yields an alternative that is most likely to be the best alternative, given k-approval votes. While the answer is generally positive, our theoretical and empirical results call attention to situations where approval voting is suboptimal.