NIPS Proceedingsβ

A Structural Smoothing Framework For Robust Graph Comparison

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

In this paper, we propose a general smoothing framework for graph kernels by taking \textit{structural similarity} into account, and apply it to derive smoothed variants of popular graph kernels. Our framework is inspired by state-of-the-art smoothing techniques used in natural language processing (NLP). However, unlike NLP applications which primarily deal with strings, we show how one can apply smoothing to a richer class of inter-dependent sub-structures that naturally arise in graphs. Moreover, we discuss extensions of the Pitman-Yor process that can be adapted to smooth structured objects thereby leading to novel graph kernels. Our kernels are able to tackle the diagonal dominance problem, while respecting the structural similarity between sub-structures, especially under the presence of edge or label noise. Experimental evaluation shows that not only our kernels outperform the unsmoothed variants, but also achieve statistically significant improvements in classification accuracy over several other graph kernels that have been recently proposed in literature. Our kernels are competitive in terms of runtime, and offer a viable option for practitioners.