
Efficient and Robust Automated Machine Learning

Matthias Feurer Aaron Klein Katharina Eggensperger
Jost Tobias Springenberg Manuel Blum Frank Hutter

Department of Computer Science
University of Freiburg, Germany

{feurerm,kleinaa,eggenspk,springj,mblum,fh}@cs.uni-freiburg.de

Abstract

The success of machine learning in a broad range of applications has led to an
ever-growing demand for machine learning systems that can be used off the shelf
by non-experts. To be effective in practice, such systems need to automatically
choose a good algorithm and feature preprocessing steps for a new dataset at hand,
and also set their respective hyperparameters. Recent work has started to tackle this
automated machine learning (AutoML) problem with the help of efficient Bayesian
optimization methods. Building on this, we introduce a robust new AutoML system
based on scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and
4 data preprocessing methods, giving rise to a structured hypothesis space with
110 hyperparameters). This system, which we dub AUTO-SKLEARN, improves on
existing AutoML methods by automatically taking into account past performance
on similar datasets, and by constructing ensembles from the models evaluated
during the optimization. Our system won the first phase of the ongoing ChaLearn
AutoML challenge, and our comprehensive analysis on over 100 diverse datasets
shows that it substantially outperforms the previous state of the art in AutoML. We
also demonstrate the performance gains due to each of our contributions and derive
insights into the effectiveness of the individual components of AUTO-SKLEARN.

1 Introduction

Machine learning has recently made great strides in many application areas, fueling a growing
demand for machine learning systems that can be used effectively by novices in machine learning.
Correspondingly, a growing number of commercial enterprises aim to satisfy this demand (e.g.,
BigML.com, Wise.io, SkyTree.com, RapidMiner.com, Dato.com, Prediction.io, DataRobot.com, Microsoft’s Azure Machine

Learning, Google’s Prediction API, and Amazon Machine Learning). At its core, every effective machine learning
service needs to solve the fundamental problems of deciding which machine learning algorithm to
use on a given dataset, whether and how to preprocess its features, and how to set all hyperparameters.
This is the problem we address in this work.

More specifically, we investigate automated machine learning (AutoML), the problem of automatically
(without human input) producing test set predictions for a new dataset within a fixed computational
budget. Formally, this AutoML problem can be stated as follows:

Definition 1 (AutoML problem). For i = 1, . . . , n+m, let xi ∈ Rd denote a feature vector and yi ∈
Y the corresponding target value. Given a training dataset Dtrain = {(x1, y1), . . . , (xn, yn)} and
the feature vectors xn+1, . . . ,xn+m of a test dataset Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)}
drawn from the same underlying data distribution, as well as a resource budget b and a loss metric
L(·, ·), the AutoML problem is to (automatically) produce test set predictions ŷn+1, . . . , ŷn+m. The
loss of a solution ŷn+1, . . . , ŷn+m to the AutoML problem is given by 1

m

∑m
j=1 L(ŷn+j , yn+j).

1



In practice, the budget b would comprise computational resources, such as CPU and/or wallclock time
and memory usage. This problem definition reflects the setting of the ongoing ChaLearn AutoML
challenge [1]. The AutoML system we describe here won the first phase of that challenge.

Here, we follow and extend the AutoML approach first introduced by AUTO-WEKA [2] (see
http://automl.org). At its core, this approach combines a highly parametric machine learning
framework F with a Bayesian optimization [3] method for instantiating F well for a given dataset.

The contribution of this paper is to extend this AutoML approach in various ways that considerably
improve its efficiency and robustness, based on principles that apply to a wide range of machine
learning frameworks (such as those used by the machine learning service providers mentioned above).
First, following successful previous work for low dimensional optimization problems [4, 5, 6],
we reason across datasets to identify instantiations of machine learning frameworks that perform
well on a new dataset and warmstart Bayesian optimization with them (Section 3.1). Second, we
automatically construct ensembles of the models considered by Bayesian optimization (Section 3.2).
Third, we carefully design a highly parameterized machine learning framework from high-performing
classifiers and preprocessors implemented in the popular machine learning framework scikit-learn [7]
(Section 4). Finally, we perform an extensive empirical analysis using a diverse collection of datasets
to demonstrate that the resulting AUTO-SKLEARN system outperforms previous state-of-the-art
AutoML methods (Section 5), to show that each of our contributions leads to substantial performance
improvements (Section 6), and to gain insights into the performance of the individual classifiers and
preprocessors used in AUTO-SKLEARN (Section 7).

2 AutoML as a CASH problem

We first review the formalization of AutoML as a Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem used by AUTO-WEKA’s AutoML approach. Two important problems
in AutoML are that (1) no single machine learning method performs best on all datasets and (2) some
machine learning methods (e.g., non-linear SVMs) crucially rely on hyperparameter optimization.
The latter problem has been successfully attacked using Bayesian optimization [3], which nowadays
forms a core component of an AutoML system. The former problem is intertwined with the latter since
the rankings of algorithms depend on whether their hyperparameters are tuned properly. Fortunately,
the two problems can efficiently be tackled as a single, structured, joint optimization problem:
Definition 2 (CASH). LetA = {A(1), . . . , A(R)} be a set of algorithms, and let the hyperparameters
of each algorithm A(j) have domain Λ(j). Further, let Dtrain = {(x1, y1), . . . , (xn, yn)} be a train-
ing set which is split into K cross-validation folds {D(1)

valid, . . . , D
(K)
valid} and {D(1)

train, . . . , D
(K)
train}

such that D(i)
train = Dtrain\D(i)

valid for i = 1, . . . ,K. Finally, let L(A
(j)
λ , D

(i)
train, D

(i)
valid) denote the

loss that algorithm A(j) achieves on D
(i)
valid when trained on D

(i)
train with hyperparameters λ. Then,

the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem is to find the
joint algorithm and hyperparameter setting that minimizes this loss:

A?,λ? ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L(A
(j)
λ , D

(i)
train, D

(i)
valid). (1)

This CASH problem was first tackled by Thornton et al. [2] in the AUTO-WEKA system using the
machine learning framework WEKA [8] and tree-based Bayesian optimization methods [9, 10]. In
a nutshell, Bayesian optimization [3] fits a probabilistic model to capture the relationship between
hyperparameter settings and their measured performance; it then uses this model to select the most
promising hyperparameter setting (trading off exploration of new parts of the space vs. exploitation
in known good regions), evaluates that hyperparameter setting, updates the model with the result,
and iterates. While Bayesian optimization based on Gaussian process models (e.g., Snoek et al. [11])
performs best in low-dimensional problems with numerical hyperparameters, tree-based models have
been shown to be more successful in high-dimensional, structured, and partly discrete problems [12] –
such as the CASH problem – and are also used in the AutoML system HYPEROPT-SKLEARN [13].
Among the tree-based Bayesian optimization methods, Thornton et al. [2] found the random-forest-
based SMAC [9] to outperform the tree Parzen estimator TPE [10], and we therefore use SMAC
to solve the CASH problem in this paper. Next to its use of random forests [14], SMAC’s main
distinguishing feature is that it allows fast cross-validation by evaluating one fold at a time and
discarding poorly-performing hyperparameter settings early.

2

http://automl.org


AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b,L}

meta-
learning

data pre-
processor

feature
preprocessor

classifier
build

ensemble
Ŷtest

Bayesian optimizer

Figure 1: Our improved AutoML approach. We add two components to Bayesian hyperparameter optimization
of an ML framework: meta-learning for initializing the Bayesian optimizer and automated ensemble construction
from configurations evaluated during optimization.

3 New methods for increasing efficiency and robustness of AutoML

We now discuss our two improvements of the AutoML approach. First, we include a meta-learning
step to warmstart the Bayesian optimization procedure, which results in a considerable boost in
efficiency. Second, we include an automated ensemble construction step, allowing us to use all
classifiers that were found by Bayesian optimization.

Figure 1 summarizes the overall AutoML workflow, including both of our improvements. We note
that we expect their effectiveness to be greater for flexible ML frameworks that offer many degrees of
freedom (e.g., many algorithms, hyperparameters, and preprocessing methods).

3.1 Meta-learning for finding good instantiations of machine learning frameworks

Domain experts derive knowledge from previous tasks: They learn about the performance of machine
learning algorithms. The area of meta-learning [15] mimics this strategy by reasoning about the
performance of learning algorithms across datasets. In this work, we apply meta-learning to select
instantiations of our given machine learning framework that are likely to perform well on a new
dataset. More specifically, for a large number of datasets, we collect both performance data and a set
of meta-features, i.e., characteristics of the dataset that can be computed efficiently and that help to
determine which algorithm to use on a new dataset.

This meta-learning approach is complementary to Bayesian optimization for optimizing an ML
framework. Meta-learning can quickly suggest some instantiations of the ML framework that are
likely to perform quite well, but it is unable to provide fine-grained information on performance.
In contrast, Bayesian optimization is slow to start for hyperparameter spaces as large as those of
entire ML frameworks, but can fine-tune performance over time. We exploit this complementarity by
selecting k configurations based on meta-learning and use their result to seed Bayesian optimization.
This approach of warmstarting optimization by meta-learning has already been successfully applied
before [4, 5, 6], but never to an optimization problem as complex as that of searching the space
of instantiations of a full-fledged ML framework. Likewise, learning across datasets has also
been applied in collaborative Bayesian optimization methods [16, 17]; while these approaches are
promising, they are so far limited to very few meta-features and cannot yet cope with the high-
dimensional partially discrete configuration spaces faced in AutoML.

More precisely, our meta-learning approach works as follows. In an offline phase, for each machine
learning dataset in a dataset repository (in our case 140 datasets from the OpenML [18] repository),
we evaluated a set of meta-features (described below) and used Bayesian optimization to determine
and store an instantiation of the given ML framework with strong empirical performance for that
dataset. (In detail, we ran SMAC [9] for 24 hours with 10-fold cross-validation on two thirds of the
data and stored the resulting ML framework instantiation which exhibited best performance on the
remaining third). Then, given a new dataset D, we compute its meta-features, rank all datasets by
their L1 distance to D in meta-feature space and select the stored ML framework instantiations for
the k = 25 nearest datasets for evaluation before starting Bayesian optimization with their results.

To characterize datasets, we implemented a total of 38 meta-features from the literature, including
simple, information-theoretic and statistical meta-features [19, 20], such as statistics about the number
of data points, features, and classes, as well as data skewness, and the entropy of the targets. All
meta-features are listed in Table 1 of the supplementary material. Notably, we had to exclude the
prominent and effective category of landmarking meta-features [21] (which measure the performance
of simple base learners), because they were computationally too expensive to be helpful in the online
evaluation phase. We note that this meta-learning approach draws its power from the availability of

3



a repository of datasets; due to recent initiatives, such as OpenML [18], we expect the number of
available datasets to grow ever larger over time, increasing the importance of meta-learning.

3.2 Automated ensemble construction of models evaluated during optimization

While Bayesian hyperparameter optimization is data-efficient in finding the best-performing hyperpa-
rameter setting, we note that it is a very wasteful procedure when the goal is simply to make good
predictions: all the models it trains during the course of the search are lost, usually including some
that perform almost as well as the best. Rather than discarding these models, we propose to store them
and to use an efficient post-processing method (which can be run in a second process on-the-fly) to
construct an ensemble out of them. This automatic ensemble construction avoids to commit itself to a
single hyperparameter setting and is thus more robust (and less prone to overfitting) than using the
point estimate that standard hyperparameter optimization yields. To our best knowledge, we are the
first to make this simple observation, which can be applied to improve any Bayesian hyperparameter
optimization method.

It is well known that ensembles often outperform individual models [22, 23], and that effective
ensembles can be created from a library of models [24, 25]. Ensembles perform particularly well if
the models they are based on (1) are individually strong and (2) make uncorrelated errors [14]. Since
this is much more likely when the individual models are different in nature, ensemble building is
particularly well suited for combining strong instantiations of a flexible ML framework.

However, simply building a uniformly weighted ensemble of the models found by Bayesian optimiza-
tion does not work well. Rather, we found it crucial to adjust these weights using the predictions of
all individual models on a hold-out set. We experimented with different approaches to optimize these
weights: stacking [26], gradient-free numerical optimization, and the method ensemble selection [24].
While we found both numerical optimization and stacking to overfit to the validation set and to be
computationally costly, ensemble selection was fast and robust. In a nutshell, ensemble selection
(introduced by Caruana et al. [24]) is a greedy procedure that starts from an empty ensemble and then
iteratively adds the model that maximizes ensemble validation performance (with uniform weight,
but allowing for repetitions). Procedure 1 in the supplementary material describes it in detail. We
used this technique in all our experiments – building an ensemble of size 50.

4 A practical automated machine learning system

data
preprocessor

estimatorfeature
preprocessor classifier

AdaBoost· · ·RF kNN

# estimatorslearning rate max. depth

preprocessing

· · ·NonePCA fast ICA

rescaling

· · ·min/max standard

one hot enc.

· · ·

imputation

mean · · · median

balancing

weighting None

Figure 2: Structured configuration space. Squared boxes
denote parent hyperparameters whereas boxes with rounded
edges are leaf hyperparameters. Grey colored boxes mark
active hyperparameters which form an example configuration
and machine learning pipeline. Each pipeline comprises one
feature preprocessor, classifier and up to three data prepro-
cessor methods plus respective hyperparameters.

To design a robust AutoML system, as
our underlying ML framework we chose
scikit-learn [7], one of the best known
and most widely used machine learning
libraries. It offers a wide range of well es-
tablished and efficiently-implemented ML
algorithms and is easy to use for both ex-
perts and beginners. Since our AutoML
system closely resembles AUTO-WEKA,
but – like HYPEROPT-SKLEARN – is based
on scikit-learn, we dub it AUTO-SKLEARN.

Figure 2 depicts AUTO-SKLEARN’s overall
components. It comprises 15 classification
algorithms, 14 preprocessing methods, and
4 data preprocessing methods. We param-
eterized each of them, which resulted in a
space of 110 hyperparameters. Most of these are conditional hyperparameters that are only active
if their respective component is selected. We note that SMAC [9] can handle this conditionality
natively.

All 15 classification algorithms in AUTO-SKLEARN are listed in Table 1a (and described in detail in
Section A.1 of the supplementary material). They fall into different categories, such as general linear
models (2 algorithms), support vector machines (2), discriminant analysis (2), nearest neighbors
(1), naı̈ve Bayes (3), decision trees (1) and ensembles (4). In contrast to AUTO-WEKA [2], we

4



name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli naı̈ve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
Linear Class. (SGD) 10 4 (-) 6 (3)

(a) classification algorithms

name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 () 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (-)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)

one-hot encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

(b) preprocessing methods

Table 1: Number of hyperparameters for each possible classifier (left) and feature preprocessing method
(right) for a binary classification dataset in dense representation. Tables for sparse binary classification and
sparse/dense multiclass classification datasets can be found in the Section E of the supplementary material,
Tables 2a, 3a, 4a, 2b, 3b and 4b. We distinguish between categorical (cat) hyperparameters with discrete values
and continuous (cont) numerical hyperparameters. Numbers in brackets are conditional hyperparameters, which
are only relevant when another parameter has a certain value.

focused our configuration space on base classifiers and excluded meta-models and ensembles that
are themselves parameterized by one or more base classifiers. While such ensembles increased
AUTO-WEKA’s number of hyperparameters by almost a factor of five (to 786), AUTO-SKLEARN
“only” features 110 hyperparameters. We instead construct complex ensembles using our post-hoc
method from Section 3.2. Compared to AUTO-WEKA, this is much more data-efficient: in AUTO-
WEKA, evaluating the performance of an ensemble with 5 components requires the construction and
evaluation of 5 models; in contrast, in AUTO-SKLEARN, ensembles come largely for free, and it is
possible to mix and match models evaluated at arbitrary times during the optimization.

The preprocessing methods for datasets in dense representation in AUTO-SKLEARN are listed in
Table 1b (and described in detail in Section A.2 of the supplementary material). They comprise data
preprocessors (which change the feature values and are always used when they apply) and feature
preprocessors (which change the actual set of features, and only one of which [or none] is used). Data
preprocessing includes rescaling of the inputs, imputation of missing values, one-hot encoding and
balancing of the target classes. The 14 possible feature preprocessing methods can be categorized into
feature selection (2), kernel approximation (2), matrix decomposition (3), embeddings (1), feature
clustering (1), polynomial feature expansion (1) and methods that use a classifier for feature selection
(2). For example, L1-regularized linear SVMs fitted to the data can be used for feature selection by
eliminating features corresponding to zero-valued model coefficients.

As with every robust real-world system, we had to handle many more important details in AUTO-
SKLEARN; we describe these in Section B of the supplementary material.

5 Comparing AUTO-SKLEARN to AUTO-WEKA and HYPEROPT-SKLEARN

As a baseline experiment, we compared the performance of vanilla AUTO-SKLEARN (without our
improvements) to AUTO-WEKA and HYPEROPT-SKLEARN, reproducing the experimental setup
with 21 datasets of the paper introducing AUTO-WEKA [2]. We describe this setup in detail in
Section G in the supplementary material.

Table 2 shows that AUTO-SKLEARN performed statistically significantly better than AUTO-WEKA
in 6/21 cases, tied it in 12 cases, and lost against it in 3. For the three datasets where AUTO-
WEKA performed best, we found that in more than 50% of its runs the best classifier it chose is not
implemented in scikit-learn (trees with a pruning component). So far, HYPEROPT-SKLEARN is more
of a proof-of-concept – inviting the user to adapt the configuration space to her own needs – than
a full AutoML system. The current version crashes when presented with sparse data and missing
values. It also crashes on Cifar-10 due to a memory limit which we set for all optimizers to enable a

5



A
ba

lo
ne

A
m

az
on

C
ar

C
ifa

r-
10

C
ifa

r-
10

Sm
al

l

C
on

ve
x

D
ex

te
r

D
or

ot
he

a

G
er

m
an

C
re

di
t

G
is

et
te

K
D

D
09

A
pp

et
en

cy

K
R

-v
s-

K
P

M
ad

el
on

M
N

IS
T

B
as

ic

M
R

B
I

Se
co

m

Se
m

ei
on

Sh
ut

tle

W
av

ef
or

m

W
in

e
Q

ua
lit

y

Y
ea

st

AS 73.50 16.00 0.39 51.70 54.81 17.53 5.56 5.51 27.00 1.62 1.74 0.42 12.44 2.84 46.92 7.87 5.24 0.01 14.93 33.76 40.67
AW 73.50 30.00 0.00 56.95 56.20 21.80 8.33 6.38 28.33 2.29 1.74 0.31 18.21 2.84 60.34 8.09 5.24 0.01 14.13 33.36 37.75
HS 76.21 16.22 0.39 - 57.95 19.18 - - 27.67 2.29 - 0.42 14.74 2.82 55.79 - 5.87 0.05 14.07 34.72 38.45

Table 2: Test set classification error of AUTO-WEKA (AW), vanilla AUTO-SKLEARN (AS) and HYPEROPT-
SKLEARN (HS), as in the original evaluation of AUTO-WEKA [2]. We show median percent error across
100 000bootstrap samples (based on 10 runs), simulating 4 parallel runs. Bold numbers indicate the best result.
Underlined results are not statistically significantly different from the best according to a bootstrap test with
p = 0 :05.

RMM NMMM NRMM OMMM ORMM PMMM PRMM
²§«£=x±£¡z

NKU

OKM

OKO

OKQ

OKS

OKU

PKM

~
´
£
°~

¥
£
=°

~
¬
©

´~¬§ªª~=~³²J±©ª£~°¬

~³²J±©ª£~°¬=H=£¬±£« ª£

~³²J±©ª£~°¬=H=«£²~Jª£~°¬§¬¥

~³²J±©ª£~°¬=H=«£²~Jª£~°¬§¬¥=H=£¬±£« ª£

Figure 3: Average rank of all four AUTO-SKLEARN variants (ranked by balanced test error rate (BER)) across
140 datasets. Note that ranks are a relative measure of performance (here, the rank of all methods has to add up
to 10), and hence an improvement in BER of one method can worsen the rank of another. The supplementary
material shows the same plot on a log-scale to show the time overhead of meta-feature and ensemble computation.

fair comparison. On the 16 datasets on which it ran, it statistically tied the best optimizer in 9 cases
and lost against it in 7.

6 Evaluation of the proposed AutoML improvements

In order to evaluate the robustness and general applicability of our proposed AutoML system on
a broad range of datasets, we gathered 140 binary and multiclass classification datasets from the
OpenML repository [18], only selecting datasets with at least 1000 data points to allow robust
performance evaluations. These datasets cover a diverse range of applications, such as text classifi-
cation, digit and letter recognition, gene sequence and RNA classification, advertisement, particle
classification for telescope data, and cancer detection in tissue samples. We list all datasets in Table 7
and 8 in the supplementary material and provide their unique OpenML identifiers for reproducibility.
Since the class distribution in many of these datasets is quite imbalanced we evaluated all AutoML
methods using a measure called balanced classification error rate (BER). We define balanced error
rate as the average of the proportion of wrong classifications in each class. In comparison to standard
classification error (the average overall error), this measure (the average of the class-wise error)
assigns equal weight to all classes. We note that balanced error or accuracy measures are often used
in machine learning competitions (e.g., the AutoML challenge [1] uses balanced accuracy).

We performed 10 runs of AUTO-SKLEARN both with and without meta-learning and with and without
ensemble prediction on each of the datasets. To study their performance under rigid time constraints,
and also due to computational resource constraints, we limited the CPU time for each run to 1 hour; we
also limited the runtime for a single model to a tenth of this (6 minutes). To not evaluate performance
on data sets already used for meta-learning, we performed a leave-one-dataset-out validation: when
evaluating on dataset D, we only used meta-information from the 139 other datasets.

Figure 3 shows the average ranks over time of the four AUTO-SKLEARN versions we tested. We
observe that both of our new methods yielded substantial improvements over vanilla AUTO-SKLEARN.
The most striking result is that meta-learning yielded drastic improvements starting with the first

6








