
Pointer Networks

Oriol Vinyals∗
Google Brain

Meire Fortunato∗
Department of Mathematics, UC Berkeley

Navdeep Jaitly
Google Brain

Abstract

We introduce a new neural architecture to learn the conditional probability of an
output sequence with elements that are discrete tokens corresponding to positions
in an input sequence. Such problems cannot be trivially addressed by existent ap-
proaches such as sequence-to-sequence [1] and Neural Turing Machines [2], be-
cause the number of target classes in each step of the output depends on the length
of the input, which is variable. Problems such as sorting variable sized sequences,
and various combinatorial optimization problems belong to this class. Our model
solves the problem of variable size output dictionaries using a recently proposed
mechanism of neural attention. It differs from the previous attention attempts in
that, instead of using attention to blend hidden units of an encoder to a context
vector at each decoder step, it uses attention as a pointer to select a member of
the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net).
We show Ptr-Nets can be used to learn approximate solutions to three challenging
geometric problems – finding planar convex hulls, computing Delaunay triangu-
lations, and the planar Travelling Salesman Problem – using training examples
alone. Ptr-Nets not only improve over sequence-to-sequence with input attention,
but also allow us to generalize to variable size output dictionaries. We show that
the learnt models generalize beyond the maximum lengths they were trained on.
We hope our results on these tasks will encourage a broader exploration of neural
learning for discrete problems.

1 Introduction

Recurrent Neural Networks (RNNs) have been used for learning functions over sequences from
examples for more than three decades [3]. However, their architecture limited them to settings
where the inputs and outputs were available at a fixed frame rate (e.g. [4]). The recently introduced
sequence-to-sequence paradigm [1] removed these constraints by using one RNN to map an input
sequence to an embedding and another (possibly the same) RNN to map the embedding to an output
sequence. Bahdanau et. al. augmented the decoder by propagating extra contextual information
from the input using a content-based attentional mechanism [5, 2, 6, 7]. These developments have
made it possible to apply RNNs to new domains, achieving state-of-the-art results in core problems
in natural language processing such as translation [1, 5] and parsing [8], image and video captioning
[9, 10], and even learning to execute small programs [2, 11].

Nonetheless, these methods still require the size of the output dictionary to be fixed a priori. Because
of this constraint we cannot directly apply this framework to combinatorial problems where the size
of the output dictionary depends on the length of the input sequence. In this paper, we address this
limitation by repurposing the attention mechanism of [5] to create pointers to input elements. We
show that the resulting architecture, which we name Pointer Networks (Ptr-Nets), can be trained to
output satisfactory solutions to three combinatorial optimization problems – computing planar con-
vex hulls, Delaunay triangulations and the symmetric planar Travelling Salesman Problem (TSP).
The resulting models produce approximate solutions to these problems in a purely data driven fash-

∗Equal contribution

1



(a) Sequence-to-Sequence (b) Ptr-Net

Figure 1: (a) Sequence-to-Sequence - An RNN (blue) processes the input sequence to create a code
vector that is used to generate the output sequence (purple) using the probability chain rule and
another RNN. The output dimensionality is fixed by the dimensionality of the problem and it is the
same during training and inference [1]. (b) Ptr-Net - An encoding RNN converts the input sequence
to a code (blue) that is fed to the generating network (purple). At each step, the generating network
produces a vector that modulates a content-based attention mechanism over inputs ([5, 2]). The
output of the attention mechanism is a softmax distribution with dictionary size equal to the length
of the input.

ion (i.e., when we only have examples of inputs and desired outputs). The proposed approach is
depicted in Figure 1.

The main contributions of our work are as follows:

• We propose a new architecture, that we call Pointer Net, which is simple and effective. It
deals with the fundamental problem of representing variable length dictionaries by using a
softmax probability distribution as a “pointer”.

• We apply the Pointer Net model to three distinct non-trivial algorithmic problems involving
geometry. We show that the learned model generalizes to test problems with more points
than the training problems.

• Our Pointer Net model learns a competitive small scale (n ≤ 50) TSP approximate solver.
Our results demonstrate that a purely data driven approach can learn approximate solutions
to problems that are computationally intractable.

2 Models

We review the sequence-to-sequence [1] and input-attention models [5] that are the baselines for this
work in Sections 2.1 and 2.2. We then describe our model - Ptr-Net in Section 2.3.

2.1 Sequence-to-Sequence Model

Given a training pair, (P, CP), the sequence-to-sequence model computes the conditional probabil-
ity p(CP |P; θ) using a parametric model (an RNN with parameters θ) to estimate the terms of the
probability chain rule (also see Figure 1), i.e.

p(CP |P; θ) =
m(P)∏
i=1

p(Ci|C1, . . . , Ci−1,P; θ). (1)

2



Here P = {P1, . . . , Pn} is a sequence of n vectors and CP = {C1, . . . , Cm(P)} is a sequence of
m(P) indices, each between 1 and n (we note that the target sequence length m(P) is, in general, a
function of P).

The parameters of the model are learnt by maximizing the conditional probabilities for the training
set, i.e.

θ∗ = argmax
θ

∑
P,CP

log p(CP |P; θ), (2)

where the sum is over training examples.

As in [1], we use an Long Short Term Memory (LSTM) [12] to model p(Ci|C1, . . . , Ci−1,P; θ).
The RNN is fed Pi at each time step, i, until the end of the input sequence is reached, at which time
a special symbol, ⇒ is input to the model. The model then switches to the generation mode until
the network encounters the special symbol⇐, which represents termination of the output sequence.

Note that this model makes no statistical independence assumptions. We use two separate RNNs
(one to encode the sequence of vectors Pj , and another one to produce or decode the output symbols
Ci). We call the former RNN the encoder and the latter the decoder or the generative RNN.

During inference, given a sequence P , the learnt parameters θ∗ are used to select the sequence
ĈP with the highest probability, i.e., ĈP = argmax

CP
p(CP |P; θ∗). Finding the optimal sequence Ĉ

is computationally impractical because of the combinatorial number of possible output sequences.
Instead we use a beam search procedure to find the best possible sequence given a beam size.

In this sequence-to-sequence model, the output dictionary size for all symbols Ci is fixed and equal
to n, since the outputs are chosen from the input. Thus, we need to train a separate model for each
n. This prevents us from learning solutions to problems that have an output dictionary with a size
that depends on the input sequence length.

Under the assumption that the number of outputs is O(n) this model has computational complexity
ofO(n). However, exact algorithms for the problems we are dealing with are more costly. For exam-
ple, the convex hull problem has complexity O(n log n). The attention mechanism (see Section 2.2)
adds more “computational capacity” to this model.

2.2 Content Based Input Attention

The vanilla sequence-to-sequence model produces the entire output sequence CP using the fixed
dimensional state of the recognition RNN at the end of the input sequence P . This constrains
the amount of information and computation that can flow through to the generative model. The
attention model of [5] ameliorates this problem by augmenting the encoder and decoder RNNs with
an additional neural network that uses an attention mechanism over the entire sequence of encoder
RNN states.

For notation purposes, let us define the encoder and decoder hidden states as (e1, . . . , en) and
(d1, . . . , dm(P)), respectively. For the LSTM RNNs, we use the state after the output gate has
been component-wise multiplied by the cell activations. We compute the attention vector at each
output time i as follows:

uij = vT tanh(W1ej +W2di) j ∈ (1, . . . , n)

aij = softmax(uij) j ∈ (1, . . . , n) (3)

d′i =

n∑
j=1

aijej

where softmax normalizes the vector ui (of length n) to be the “attention” mask over the inputs,
and v, W1, and W2 are learnable parameters of the model. In all our experiments, we use the same
hidden dimensionality at the encoder and decoder (typically 512), so v is a vector and W1 and W2

are square matrices. Lastly, d′i and di are concatenated and used as the hidden states from which we
make predictions and which we feed to the next time step in the recurrent model.

Note that for each output we have to perform n operations, so the computational complexity at
inference time becomes O(n2).

3



This model performs significantly better than the sequence-to-sequence model on the convex hull
problem, but it is not applicable to problems where the output dictionary size depends on the input.

Nevertheless, a very simple extension (or rather reduction) of the model allows us to do this easily.

2.3 Ptr-Net

We now describe a very simple modification of the attention model that allows us to apply the
method to solve combinatorial optimization problems where the output dictionary size depends on
the number of elements in the input sequence.

The sequence-to-sequence model of Section 2.1 uses a softmax distribution over a fixed sized output
dictionary to compute p(Ci|C1, . . . , Ci−1,P) in Equation 1. Thus it cannot be used for our problems
where the size of the output dictionary is equal to the length of the input sequence. To solve this
problem we model p(Ci|C1, . . . , Ci−1,P) using the attention mechanism of Equation 3 as follows:

uij = vT tanh(W1ej +W2di) j ∈ (1, . . . , n)

p(Ci|C1, . . . , Ci−1,P) = softmax(ui)

where softmax normalizes the vector ui (of length n) to be an output distribution over the dictionary
of inputs, and v, W1, and W2 are learnable parameters of the output model. Here, we do not blend
the encoder state ej to propagate extra information to the decoder, but instead, use uij as pointers
to the input elements. In a similar way, to condition on Ci−1 as in Equation 1, we simply copy
the corresponding PCi−1

as the input. Both our method and the attention model can be seen as an
application of content-based attention mechanisms proposed in [6, 5, 2, 7].

We also note that our approach specifically targets problems whose outputs are discrete and corre-
spond to positions in the input. Such problems may be addressed artificially – for example we could
learn to output the coordinates of the target point directly using an RNN. However, at inference,
this solution does not respect the constraint that the outputs map back to the inputs exactly. With-
out the constraints, the predictions are bound to become blurry over longer sequences as shown in
sequence-to-sequence models for videos [13].

3 Motivation and Datasets Structure

In the following sections, we review each of the three problems we considered, as well as our data
generation protocol.1

In the training data, the inputs are planar point sets P = {P1, . . . , Pn} with n elements each, where
Pj = (xj , yj) are the cartesian coordinates of the points over which we find the convex hull, the De-
launay triangulation or the solution to the corresponding Travelling Salesman Problem. In all cases,
we sample from a uniform distribution in [0, 1] × [0, 1]. The outputs CP = {C1, . . . , Cm(P)} are
sequences representing the solution associated to the point set P . In Figure 2, we find an illustration
of an input/output pair (P, CP) for the convex hull and the Delaunay problems.

3.1 Convex Hull

We used this example as a baseline to develop our models and to understand the difficulty of solving
combinatorial problems with data driven approaches. Finding the convex hull of a finite number
of points is a well understood task in computational geometry, and there are several exact solutions
available (see [14, 15, 16]). In general, finding the (generally unique) solution has complexity
O(n log n), where n is the number of points considered.

The vectors Pj are uniformly sampled from [0, 1] × [0, 1]. The elements Ci are indices between 1
and n corresponding to positions in the sequence P , or special tokens representing beginning or end
of sequence. See Figure 2 (a) for an illustration. To represent the output as a sequence, we start
from the point with the lowest index, and go counter-clockwise – this is an arbitrary choice but helps
reducing ambiguities during training.

1We will release all the datasets at hidden for reference.

4

hidden


(a) Input P = {P1, . . . , P10}, and the output se-
quence CP = {⇒, 2, 4, 3, 5, 6, 7, 2,⇐} represent-
ing its convex hull.

P1

P2

P3

P4

P5

(b) Input P = {P1, . . . , P5}, and the output CP =
{⇒, (1, 2, 4), (1, 4, 5), (1, 3, 5), (1, 2, 3),⇐} repre-
senting its Delaunay Triangulation.

Figure 2: Input/output representation for (a) convex hull and (b) Delaunay triangulation. The tokens
⇒ and⇐ represent beginning and end of sequence, respectively.

3.2 Delaunay Triangulation

A Delaunay triangulation for a setP of points in a plane is a triangulation such that each circumcircle
of every triangle is empty, that is, there is no point from P in its interior. Exact O(n log n) solutions
are available [17], where n is the number of points in P .

In this example, the outputs CP = {C1, . . . , Cm(P)} are the corresponding sequences representing
the triangulation of the point set P . Each Ci is a triple of integers from 1 to n corresponding to the
position of triangle vertices in P or the beginning/end of sequence tokens. See Figure 2 (b).

We note that any permutation of the sequence CP represents the same triangulation for P , addi-
tionally each triangle representation Ci of three integers can also be permuted. Without loss of
generality, and similarly to what we did for convex hulls at training time, we order the triangles Ci
by their incenter coordinates (lexicographic order) and choose the increasing triangle representa-
tion2. Without ordering, the models learned were not as good, and finding a better ordering that the
Ptr-Net could better exploit is part of future work.

3.3 Travelling Salesman Problem (TSP)

TSP arises in many areas of theoretical computer science and is an important algorithm used for
microchip design or DNA sequencing. In our work we focused on the planar symmetric TSP: given
a list of cities, we wish to find the shortest possible route that visits each city exactly once and
returns to the starting point. Additionally, we assume the distance between two cities is the same
in each opposite direction. This is an NP-hard problem which allows us to test the capabilities and
limitations of our model.

The input/output pairs (P, CP) have a similar format as in the Convex Hull problem described in
Section 3.1. P will be the cartesian coordinates representing the cities, which are chosen randomly
in the [0, 1] × [0, 1] square. CP = {C1, . . . , Cn} will be a permutation of integers from 1 to n
representing the optimal path (or tour). For consistency, in the training dataset, we always start in
the first city without loss of generality.

To generate exact data, we implemented the Held-Karp algorithm [18] which finds the optimal
solution in O(2nn2) (we used it up to n = 20). For larger n, producing exact solutions is extremely
costly, therefore we also considered algorithms that produce approximated solutions: A1 [19] and
A2 [20], which are both O(n2), and A3 [21] which implements the O(n3) Christofides algorithm.
The latter algorithm is guaranteed to find a solution within a factor of 1.5 from the optimal length.
Table 2 shows how they performed in our test sets.

2We choose Ci = (1, 2, 4) instead of (2,4,1) or any other permutation.

5



4 Empirical Results

4.1 Architecture and Hyperparameters

No extensive architecture or hyperparameter search of the Ptr-Net was done in the work presented
here, and we used virtually the same architecture throughout all the experiments and datasets. Even
though there are likely some gains to be obtained by tuning the model, we felt that having the same
model hyperparameters operate on all the problems makes the main message of the paper stronger.

As a result, all our models used a single layer LSTM with either 256 or 512 hidden units, trained with
stochastic gradient descent with a learning rate of 1.0, batch size of 128, random uniform weight
initialization from -0.08 to 0.08, and L2 gradient clipping of 2.0. We generated 1M training example
pairs, and we did observe overfitting in some cases where the task was simpler (i.e., for small n).
Training generally converged after 10 to 20 epochs.

4.2 Convex Hull

We used the convex hull as the guiding task which allowed us to understand the deficiencies of
standard models such as the sequence-to-sequence approach, and also setting up our expectations
on what a purely data driven model would be able to achieve with respect to an exact solution.

We reported two metrics: accuracy, and area covered of the true convex hull (note that any simple
polygon will have full intersection with the true convex hull). To compute the accuracy, we con-
sidered two output sequences C1 and C2 to be the same if they represent the same polygon. For
simplicity, we only computed the area coverage for the test examples in which the output represents
a simple polygon (i.e., without self-intersections). If an algorithm fails to produce a simple polygon
in more than 1% of the cases, we simply reported FAIL.

The results are presented in Table 1. We note that the area coverage achieved with the Ptr-Net is
close to 100%. Looking at examples of mistakes, we see that most problems come from points that
are aligned (see Figure 3 (d) for a mistake for n = 500) – this is a common source of errors in most
algorithms to solve the convex hull.

It was seen that the order in which the inputs are presented to the encoder during inference affects
its performance. When the points on the true convex hull are seen “late” in the input sequence, the
accuracy is lower. This is possibly the network does not have enough processing steps to “update”
the convex hull it computed until the latest points were seen. In order to overcome this problem,
we used the attention mechanism described in Section 2.2, which allows the decoder to look at
the whole input at any time. This modification boosted the model performance significantly. We
inspected what attention was focusing on, and we observed that it was “pointing” at the correct
answer on the input side. This inspired us to create the Ptr-Net model described in Section 2.3.

More than outperforming both the LSTM and the LSTM with attention, our model has the key
advantage of being inherently variable length. The bottom half of Table 1 shows that, when training
our model on a variety of lengths ranging from 5 to 50 (uniformly sampled, as we found other forms
of curriculum learning to not be effective), a single model is able to perform quite well on all lengths
it has been trained on (but some degradation for n = 50 can be observed w.r.t. the model trained only
on length 50 instances). More impressive is the fact that the model does extrapolate to lengths that it
has never seen during training. Even for n = 500, our results are satisfactory and indirectly indicate
that the model has learned more than a simple lookup. Neither LSTM or LSTM with attention can
be used for any given n′ 6= n without training a new model on n′.

4.3 Delaunay Triangulation

The Delaunay Triangulation test case is connected to our first problem of finding the convex hull. In
fact, the Delaunay Triangulation for a given set of points triangulates the convex hull of these points.

We reported two metrics: accuracy and triangle coverage in percentage (the percentage of triangles
the model predicted correctly). Note that, in this case, for an input point set P , the output sequence
C(P) is, in fact, a set. As a consequence, any permutation of its elements will represent the same
triangulation.

6



Table 1: Comparison between LSTM, LSTM with attention, and our Ptr-Net model on the convex
hull problem. Note that the baselines must be trained on the same n that they are tested on. 5-50
means the dataset had a uniform distribution over lengths from 5 to 50.

METHOD TRAINED n n ACCURACY AREA

LSTM [1] 50 50 1.9% FAIL
+ATTENTION [5] 50 50 38.9% 99.7%
PTR-NET 50 50 72.6% 99.9%
LSTM [1] 5 5 87.7% 99.6%
PTR-NET 5-50 5 92.0% 99.6%
LSTM [1] 10 10 29.9% FAIL
PTR-NET 5-50 10 87.0% 99.8%
PTR-NET 5-50 50 69.6% 99.9%
PTR-NET 5-50 100 50.3% 99.9%
PTR-NET 5-50 200 22.1% 99.9%
PTR-NET 5-50 500 1.3% 99.2%

Ground Truth Predictions

(a) LSTM, m=50, n=50

Ground Truth

(b) Truth, n=50

Ground Truth: tour length is 3.518

(c) Truth, n=20
Ground Truth Predictions

(d) Ptr-Net, m=5-50, n=500

Predictions

(e) Ptr-Net , m=50, n=50

Predictions: tour length is 3.523

(f) Ptr-Net , m=5-20, n=20

Figure 3: Examples of our model on Convex hulls (left), Delaunay (center) and TSP (right), trained
onm points, and tested on n points. A failure of the LSTM sequence-to-sequence model for Convex
hulls is shown in (a). Note that the baselines cannot be applied to a different length from training.

Using the Ptr-Net model for n = 5, we obtained an accuracy of 80.7% and triangle coverage of
93.0%. For n = 10, the accuracy was 22.6% and the triangle coverage 81.3%. For n = 50, we
did not produce any precisely correct triangulation, but obtained 52.8% triangle coverage. See the
middle column of Figure 3 for an example for n = 50.

4.4 Travelling Salesman Problem

We considered the planar symmetric travelling salesman problem (TSP), which is NP-hard as the
third problem. Similarly to finding convex hulls, it also has sequential outputs. Given that the Ptr-
Net implements an O(n2) algorithm, it was unclear if it would have enough capacity to learn a
useful algorithm solely from data.

As discussed in Section 3.3, it is feasible to generate exact solutions for relatively small values
of n to be used as training data. For larger n, due to the importance of TSP, good and efficient
algorithms providing reasonable approximate solutions exist. We used three different algorithms in
our experiments – A1, A2, and A3 (see Section 3.3 for references).

7



Table 2: Tour length of the Ptr-Net and a collection of algorithms on a small scale TSP problem.

n OPTIMAL A1 A2 A3 PTR-NET

5 2.12 2.18 2.12 2.12 2.12
10 2.87 3.07 2.87 2.87 2.88
50 (A1 TRAINED) N/A 6.46 5.84 5.79 6.42
50 (A3 TRAINED) N/A 6.46 5.84 5.79 6.09
5 (5-20 TRAINED) 2.12 2.18 2.12 2.12 2.12
10 (5-20 TRAINED) 2.87 3.07 2.87 2.87 2.87
20 (5-20 TRAINED) 3.83 4.24 3.86 3.85 3.88
25 (5-20 TRAINED) N/A 4.71 4.27 4.24 4.30
30 (5-20 TRAINED) N/A 5.11 4.63 4.60 4.72
40 (5-20 TRAINED) N/A 5.82 5.27 5.23 5.91
50 (5-20 TRAINED) N/A 6.46 5.84 5.79 7.66

Table 2 shows all of our results on TSP. The number reported is the length of the proposed tour.
Unlike the convex hull and Delaunay triangulation cases, where the decoder was unconstrained, in
this example we set the beam search procedure to only consider valid tours. Otherwise, the Ptr-Net
model would sometimes output an invalid tour – for instance, it would repeat two cities or decided
to ignore a destination. This procedure was relevant for n > 20: for n ≤ 20, the unconstrained
decoding failed less than 1% of the cases, and thus was not necessary. For 30, which goes beyond
the longest sequence seen in training, failure rate went up to 35%, and for 40, it went up to 98%.

The first group of rows in the table show the Ptr-Net trained on optimal data, except for n = 50,
since that is not feasible computationally (we trained a separate model for each n). Interestingly,
when using the worst algorithm (A1) data to train the Ptr-Net, our model outperforms the algorithm
that is trying to imitate.

The second group of rows in the table show how the Ptr-Net trained on optimal data with 5 to
20 cities can generalize beyond that. The results are virtually perfect for n = 25, and good for
n = 30, but it seems to break for 40 and beyond (still, the results are far better than chance). This
contrasts with the convex hull case, where we were able to generalize by a factor of 10. However,
the underlying algorithms have greater complexity than O(n log n), which could explain this.

5 Conclusions

In this paper we described Ptr-Net, a new architecture that allows us to learn a conditional prob-
ability of one sequence CP given another sequence P , where CP is a sequence of discrete tokens
corresponding to positions in P . We show that Ptr-Nets can be used to learn solutions to three dif-
ferent combinatorial optimization problems. Our method works on variable sized inputs (yielding
variable sized output dictionaries), something the baseline models (sequence-to-sequence with or
without attention) cannot do directly. Even more impressively, they outperform the baselines on
fixed input size problems - to which both the models can be applied.

Previous methods such as RNNSearch, Memory Networks and Neural Turing Machines [5, 6? ]
have used attention mechanisms to process inputs. However these methods do not directly address
problems that arise with variable output dictionaries. We have shown that an attention mechanism
can be applied to the output to solve such problems. In so doing, we have opened up a new class
of problems to which neural networks can be applied without artificial assumptions. In this paper,
we have applied this extension to RNNSearch, but the methods are equally applicable to Memory
Networks and Neural Turing Machines.

Future work will try and show its applicability to other problems such as sorting where the outputs
are chosen from the inputs. We are also excited about the possibility of using this approach to other
combinatorial optimization problems.

Acknowledgments

We would like to thank Rafal Jozefowicz, Ilya Sutskever, Quoc Le and Samy Bengio for useful
discussions. We would also like to thank Daniel Gillick for his help with the final manuscript.

8



References
[1] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.
[2] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.
[3] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representa-

tions by error propagation. Technical report, DTIC Document, 1985.
[4] Anthony J Robinson. An application of recurrent nets to phone probability estimation. Neural

Networks, IEEE Transactions on, 5(2):298–305, 1994.
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. In ICLR 2015, arXiv preprint arXiv:1409.0473, 2014.
[6] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLEAR 2015, arXiv

preprint arXiv:1410.3916, 2014.
[7] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.
[8] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.

Grammar as a foreign language. arXiv preprint arXiv:1412.7449, 2014.
[9] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In CVPR 2015, arXiv preprint arXiv:1411.4555, 2014.
[10] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-

gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In CVPR 2015, arXiv preprint arXiv:1411.4389, 2014.

[11] Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[13] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of
video representations using lstms. In ICML 2015, arXiv preprint arXiv:1502.04681, 2015.

[14] Ray A Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2(1):18–21, 1973.

[15] Ronald L. Graham. An efficient algorith for determining the convex hull of a finite planar set.
Information processing letters, 1(4):132–133, 1972.

[16] Franco P. Preparata and Se June Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, 1977.

[17] S1 Rebay. Efficient unstructured mesh generation by means of delaunay triangulation and
bowyer-watson algorithm. Journal of computational physics, 106(1):125–138, 1993.

[18] Richard Bellman. Dynamic programming treatment of the travelling salesman problem. Jour-
nal of the ACM (JACM), 9(1):61–63, 1962.

[19] Suboptimal travelling salesman problem (tsp) solver. Available at
https://github.com/dmishin/tsp-solver.

[20] Traveling salesman problem c++ implementation. Available at
https://github.com/samlbest/traveling-salesman.

[21] C++ implementation of traveling salesman problem using christofides and 2-opt. Available at
https://github.com/beckysag/traveling-salesman.

9


