
Backpropagation for
Energy-Efficient Neuromorphic Computing

Steve K. Esser
IBM Research–Almaden

650 Harry Road, San Jose, CA 95120
sesser@us.ibm.com

Rathinakumar Appuswamy
IBM Research–Almaden

650 Harry Road, San Jose, CA 95120
rappusw@us.ibm.com

Paul A. Merolla
IBM Research–Almaden

650 Harry Road, San Jose, CA 95120
pameroll@us.ibm.com

John V. Arthur
IBM Research–Almaden

650 Harry Road, San Jose, CA 95120
arthurjo@us.ibm.com

Dharmendra S. Modha
IBM Research–Almaden

650 Harry Road, San Jose, CA 95120
dmodha@us.ibm.com

Abstract

Solving real world problems with embedded neural networks requires both train-
ing algorithms that achieve high performance and compatible hardware that runs
in real time while remaining energy efficient. For the former, deep learning using
backpropagation has recently achieved a string of successes across many domains
and datasets. For the latter, neuromorphic chips that run spiking neural networks
have recently achieved unprecedented energy efficiency. To bring these two ad-
vances together, we must first resolve the incompatibility between backpropaga-
tion, which uses continuous-output neurons and synaptic weights, and neuromor-
phic designs, which employ spiking neurons and discrete synapses. Our approach
is to treat spikes and discrete synapses as continuous probabilities, which allows
training the network using standard backpropagation. The trained network natu-
rally maps to neuromorphic hardware by sampling the probabilities to create one
or more networks, which are merged using ensemble averaging. To demonstrate,
we trained a sparsely connected network that runs on the TrueNorth chip using the
MNIST dataset. With a high performance network (ensemble of 64), we achieve
99.42% accuracy at 108 µJ per image, and with a high efficiency network (ensem-
ble of 1) we achieve 92.7% accuracy at 0.268 µJ per image.

1 Introduction

Neural networks today are achieving state-of-the-art performance in competitions across a range of
fields [1][2][3]. Such success raises hope that we can now begin to move these networks out of
the lab and into embedded systems that can tackle real world problems. This necessitates a shift

DARPA: Approved for Public Release, Distribution Unlimited

1



in thinking to system design, where both neural network and hardware substrate must collectively
meet performance, power, space, and speed requirements.

On a neuron-for-neuron basis, the most efficient substrates for neural network operation today are
dedicated neuromorphic designs [4][5][6][7]. To achieve high efficiency, neuromorphic architec-
tures can use spikes to provide event based computation and communication that consumes energy
only when necessary, can use low precision synapses to colocate memory with computation keeping
data movement local and allowing for parallel distributed operation, and can use constrained con-
nectivity to implement neuron fan-out efficiently thus dramatically reducing network traffic on-chip.
However, such design choices introduce an apparent incompatibility with the backpropagation al-
gorithm [8] used for training today’s most successful deep networks, which uses continuous-output
neurons and high-precision synapses, and typically operates with no limits on the number of inputs
per neuron. How then can we build systems that take advantage of algorithmic insights from deep
learning, and the operational efficiency of neuromorphic hardware?

As our main contribution here, we demonstrate a learning rule and a network topology that reconciles
the apparent incompatibility between backpropagation and neuromorphic hardware. The essence
of the learning rule is to train a network offline with hardware supported connectivity, as well as
continuous valued input, neuron output, and synaptic weights, but values constrained to the range
[0, 1]. We further impose that such constrained values represent probabilities, either of a spike
occurring or of a particular synapse being on. Such a network can be trained using backpropagation,
but also has a direct representation in the spiking, low synaptic precision deployment system, thereby
bridging these two worlds. The network topology uses a progressive mixing approach, where each
neuron has access to a limited set of inputs from the previous layer, but sources are chosen such that
neurons in successive layers have access to progressively more network input.

Previous efforts have shown success with subsets of the elements we bring together here. Back-
propagation has been used to train networks with spiking neurons but with high-precision weights
[9][10][11][12], and the converse, networks with trinary synapses but with continuous output neu-
rons [13]. Other probabilistic backpropagation approaches have been demonstrated for networks
with binary neurons and binary or trinary synapses but full inter-layer connectivity [14][15].

The work presented here is novel in that i) we demonstrate for the first time an offline training
methodology using backpropagation to create a network that employs spiking neurons, synapses re-
quiring less bits of precision than even trinary weights, and constrained connectivity, ii) we achieve
the best accuracy to date on MNIST (99.42%) when compared to networks that use spiking neurons,
even with high precision synapses (99.12%) [12], as well as networks that use binary synapses and
neurons (97.88%) [15], and iii) we demonstrate the network running in real-time on the TrueNorth
chip [7], achieving by far the best published power efficiency for digit recognition (4 µJ per classifi-
cation at 95% accuracy running 1000 images per second) compared to other low power approaches
(6 mJ per classification at 95% accuracy running 50 images per second) [16].

2 Deployment Hardware

We use the TrueNorth neurosynaptic chip [7] as our example deployment system, though the ap-
proach here could be generalized to other neuromorphic hardware [4][5][6]. The TrueNorth chip
consists of 4096 cores, with each core containing 256 axons (inputs), a 256 × 256 synapse cross-
bar, and 256 spiking neurons. Information flows via spikes from a neuron to one axon between
any two cores, and from the axon to potentially all neurons on the core, gated by binary synapses
in the crossbar. Neurons can be considered to take on a variety of dynamics [17], including those
described below. Each axon is assigned 1 of 4 axon types, which is used as an index into a lookup
table of s-values, unique to each neuron, that provides a signed 9-bit integer synaptic strength to the
corresponding synapse. This approach requires only 1 bit per synapse for the on/off state and an
additional 0.15 bits per synapse for the lookup table scheme.

3 Network Training

In our approach, we employ two types of multilayer networks. The deployment network runs on a
platform supporting spiking neurons, discrete synapses with low precision, and limited connectivity.

2



The training network is used to learn binary synaptic connectivity states and biases. This network
shares the same topology as the deployment network, but represents input data, neuron outputs,
and synaptic connections using continuous values constrained to the range [0, 1] (an overview is
provided in Figure 1 and Table 1). These values correspond to probabilities of a spike occurring
or of a synapse being “on”, providing a means of mapping the training network to the deployment
network, while providing a continuous and differentiable space for backpropagation. Below, we
describe the deployment network, our training methodology, and our procedure for mapping the
training network to the deployment network.

3.1 Deployment network

1
-1

Synapse 
strength

.9

.7

.2

.2

.5

.7

.7

Deployment Training

Spikes

Connected
synapses

Spike
probabilities

Synaptic
connection
probabilities

Input Input

Neuron Neuron

Figure 1: Diagram showing input, synapses, and
output for one neuron in the deployment and train-
ing network. For simplicity, only three synapses
are depicted.

Our deployment network follows a feed-
forward methodology where neurons are se-
quentially updated from the first to the last
layer. Input to the network is represented us-
ing stochastically generated spikes, where the
value of each input unit is 0 or 1 with some
probability. We write this as P (xi = 1) ≡ x̃i,
where xi is the spike state of input unit i and
x̃i is a continuous value in the range [0, 1] de-
rived by re-scaling the input data (pixels). This
scheme allows representation of data using bi-
nary spikes, while preserving data precision in
the expectation.

Summed neuron input is computed as

Ij =
∑
i

xicijsij + bj , (1)

where j is the target neuron index, cij is a bi-
nary indicator variable representing whether a

synapse is on, sij is the synaptic strength, and bj is the bias term. This is identical to common prac-
tice in neural networks, except that we have factored the synaptic weight into cij and sij , such that
we can focus our learning efforts on the former for reasons described below. The neuron activation
function follows a history-free thresholding equation

nj =

{
1 if Ij > 0,

0 otherwise.

These dynamics are implemented in TrueNorth by setting each neuron’s leak equal to the learned
bias term (dropping any fractional portion), its threshold to 0, its membrane potential floor to 0, and
setting its synapse parameters using the scheme described below.

We represent each class label using multiple output neurons in the last layer of the network, which
we found improves prediction performance. The network prediction for a class is simply the average
of the output of all neurons assigned to that class.

Table 1: Network components

Deployment Network Training Network
Variable Values Correspondance Variable Values

Network input x {0, 1} P (x = 1) ≡ x̃ x̃ [0, 1]

Synaptic connection c {0, 1} P (c = 1) ≡ c̃ c̃ [0, 1]

Synaptic strength s {−1, 1} s ≡ s s {−1, 1}
Neuron output n {0, 1} P (n = 1) ≡ ñ ñ [0, 1]

3



3.2 Training network

Training follows the backpropagation methodology by iteratively i) running a forward pass from
the first layer to the last layer, ii) comparing the network output to desired output using a loss
function, iii) propagating the loss backwards through the network to determine the loss gradient
at each synapse and bias term, and iv) using this gradient to update the network parameters. The
training network forward pass is a probabilistic representation of the deployment network forward
pass.

Synaptic connections are represented as probabilities using c̃ij , where P (cij = 1) ≡ c̃ij , while
synaptic strength is represented using sij as in the deployment network. It is assumed that sij
can be drawn from a limited set of values and we consider the additional constraint that it is set
in “blocks” such that multiple synapses share the same value, as done in TrueNorth for efficiency.
While it is conceivable to learn optimal values for sij under such conditions, this requires stepwise
changes between allowed values and optimization that is not local to each synapse. We take a simpler
approach here, which is to learn biases and synapse connection probabilities, and to intelligently fix
the synapse strengths using an approach described in the Network Initialization section.

Input to the training network is represented using x̃i, which is the probability of an input spike
occurring in the deployment network. For neurons, we note that Equation 1 is a summation of
weighted Bernoulli variables plus a bias term. If we assume independence of these inputs and have
sufficient numbers, then we can approximate the probability distribution of this summation as a
Gaussian with mean

µj = bj +
∑
i

x̃ic̃ijsij

and variance
σ2
j =

∑
i

x̃ic̃ij(1− x̃ic̃ij)s2ij . (2)

We can then derive the probability of such a neuron firing using the complementary cumulative
distribution function of a Gaussian:

ñj = 1− 1

2

1 + erf

θ − µj√
2σ2

j

 , (3)

where erf is the error function, θ = 0 and P (nj = 1) ≡ ñj . For layers after the first, x̃i is replaced
by the input from the previous layer, ñi, which represents the probability that a neuron produces a
spike.

A variety of loss functions are suitable for our approach, but we found that training converged the
fastest when using log loss,

E = −
∑
k

[yk log(pk) + (1− yk) log(1− pk)] ,

where for each class k, yk is a binary class label that is 1 if the class is present and 0 otherwise, and
pk is the probability that the the average spike count for the class is greater than 0.5. Conveniently,
we can use the Gaussian approximation in Equation 3 for this, with θ = 0.5 and the mean and
variance terms set by the averaging process.

The training network backward pass is an adaptation of backpropagation using the neuron and
synapse equations above. To get the gradient at each synapse, we use the chain rule to compute

∂E

∂c̃ij
=
∂E

∂ñj

∂ñj
∂c̃ij

.

For the bias, a similar computation is made by replacing c̃ij in the above equation with bj .

We can then differentiate Equation 3 to produce

∂ñj
∂c̃ij

=
x̃isij

σj
√

2π
e
−
(

(θ−µj)
2

2σ2
j

)
− (θ − µj)

x̃is
2
ij − x̃2i c̃ijs2ij
σ3
j

√
2π

e
−
(

(θ−µj)
2

2σ2
j

)
. (4)

4



As described below, we will assume that the synapse strengths to each neuron are balanced between
positive and negative values and that each neuron receives 256 inputs, so we can expect µ to be
close to zero, and µ, ñi and c̃ij to be much less than σ. Therefore, the right term of Equation 4
containing the denominator σ3

j , can be expected to be much smaller than the left term containing the
denominator σj . Under these conditions, for computational efficiency we can approximate Equation
4 by dropping the right term and factoring out the remainder as

∂ñj
∂c̃ij

≈ ∂ñj
∂µj

∂µj

∂c̃ij
,

where
∂ñj
∂µj

=
1

σj
√

2π
e
−
(

(θ−µj)
2

2σ2
j

)
,

and
∂µj

∂c̃ij
= x̃isij .

A similar treatment can be used to show that corresponding gradient with respect to the bias term
equals one.

The network is updated using the loss gradient at each synapse and bias term. For each iteration,
synaptic connection probability changes according to

∆c̃ij = −α ∂E
∂c̃ij

,

where α is the learning rate. Any synaptic connection probabilities that fall outside of the range
[0, 1] as a result of the update rule are “snapped” to the nearest valid value. Changes to the bias
term are handled in a similar fashion, with values clipped to fall in the range [−255, 255], the largest
values supported using TrueNorth neuron parameters.

The training procedure described here is amenable to methods and heuristics applied in standard
backpropagation. For the results shown below, we used mini batch size 100, momentum 0.9, dropout
0.5 [18], learning rate decay on a fixed schedule across training iterations starting at 0.1 and mul-
tiplying by 0.1 every 250 epochs, and transformations of the training data for each iteration with
rotation up to ±15◦, shift up to ±5 pixels and rescale up to ±15%.

3.3 Mapping training network to deployment network

Training is performed offline, and the resulting network is mapped to the deployment network for
hardware operation. For deployment, depending on system requirements, we can utilize an ensemble
of one or more samplings of the training network to increase overall output performance. Unlike
other ensemble methods, we train only once then sample the training network for each member. The
system output for each class is determined by averaging across all neurons in all member networks
assigned to the class. Synaptic connection states are set on or off according to P (cij = 1) ≡
c̃ij , using independent random number draws for each synapse in each ensemble member. Data is
converted into a spiking representation for input using P (xi = 1) ≡ x̃i, using independent random
number draws for each input to each member of the ensemble.

3.4 Network initialization

The approach for network initialization described here allows us to optimize for efficient neuromor-
phic hardware that employs less than 2 bits per synapse. In our approach, each synaptic connection
probability is initialized from a uniform random distribution over the range [0, 1]. To initialize
synapse strength values, we begin from the principle that each core should maximize information
transfer by maximizing information per neuron and minimizing redundancy between neurons. Such
methods have been explored in detail in approaches such as infomax [19]. While the first of these
goals is data dependent, we can pursue the second at initialization time by tuning the space of pos-
sible weights for a core, represented by the matrix of synapse strength values, S.

5



Axons 1-64
Type 1

Axons 65-128
Type 2

Axons 129-192
Type 3

Axons 193-256
Type 4

N
eurons 1-11

N
eurons 12-22

N
eurons 246-256

1
-1

Synapse 
strength

...

Figure 2: Synapse strength values de-
picted as axons (rows) × neurons (columns)
array. The learning procedure fixes these
values when the network is initialized and
learns the probability that each synapse is
in a transmitting state. The blocky appear-
ance of the strength matrix is the result of
the shared synaptic strength approach used
by TrueNorth to reduce memory footprint.

In our approach, we wish to minimize redundancy
between neurons on a core by attempting to induce a
product distribution on the outputs for every pair of
neurons. To simplify the problem, we note that the
summed weighted inputs to a pair of neurons is well-
approximated by a bi-variate Gaussian distribution.
Thus, forcing the covariance between the summed
weighted inputs to zero guarantees that the inputs are
independent. Furthermore, since functions of pair-
wise independent random variables remain pair-wise
independent, the neuron outputs are guaranteed to be
independent.

The summed weighted input to j-th neuron is given
by Equation 1. It is desirable for the purposes of
maintaining balance in neuron dynamics to config-
ure its weights using a mix of positive and negative
values that sum to zero. Thus for all j,∑

i

sij = 0, (5)

which implies that E[Ij ] ≈ 0 assuming inputs and
synaptic connection states are both decorrelated and
the bias term is near 0. This simplifies the covariance
between the inputs to any two neurons on a core to

E[IjIr] = E

∑
i,q

xicijsijxqcqrsqr

 .
Rearranging terms, we get

E[IjIr] =
∑
i

cijsijcqrsqrE[x2i ] +
∑
i

cijsij
∑
q 6=i

cqrsqrE[xixq]. (6)

Next, we note from the equation for covariance that E[xixq] = σ(xi, xq) + E[xi]E[xq]. Under
the assumption that inputs have equal mean and variance, then for any i, E[x2i ] = ρ, where ρ =
σ(xi, xq) + E[xi]E[xq] is a constant. Further assuming that covariance between xi and xq where
i 6= q is the same for all inputs, then E[xixq] = γ, where γ = σ(xi, xq) +E[xi]E[xq] is a constant.
Using this and equation (5), Equation 6 becomes

E[IjIr] = ρ 〈cjsj , crsr〉+ γ
∑
i

cijsij(−cirsir)

= ρ 〈cjsj , crsr〉 − γ 〈cjsj , crsr〉
= (ρ− γ) 〈cjsj , crsr〉 .

So minimizing the absolute value of the inner product between columns of W forces Ij and Ir to be
maximally uncorrelated under the constraints.

Inspired by this observation, we apriori (i.e., without any knowledge of the input data) choose the
strength values such that the absolute value of the inner product between columns of the effective
weight matrix is minimized, and the sum of effective weights to each neuron is zero. Practically,
this is achieved by assigning half of each neuron’s s-values to −1 and the other half to 1, balancing
the possible permutations of such assignments so they occur as equally as possible across neurons
on a core, and evenly distributing the four possible axon types amongst the axons on a core. The
resulting matrix of synaptic strength values can be seen in Figure 2. This configuration thus provides
an optimal weight subspace, given the constraints, in which backpropagation can operate in a data-
driven fashion to find desirable synaptic on/off states.

6



1 cm

16

3

input

16

12

input

5 Core Network 30 Core Network

one core
(256 neurons)

input window

layer

stride

256 neurons

A
B

C

Figure 3: A) Two network configurations used for the results described here, a 5 core network
designed to minimize core count and a 30 core network designed to maximize accuracy. B) Board
with a socketed TrueNorth chip used to run the deployment networks. The chip is 4.3 cm2, runs
in real time (1 ms neuron updates), and consumes 63 mW running a benchmark network that uses
all of its 1 million neuron [7]. C) Measured accuracy and measured energy for the two network
configurations running on the chip. Ensemble size is shown to the right of each data point.

4 Network topology

The network topology is designed to support neurons with responses to local, regional or global
features while respecting the “core-to-core” connectivity of the TrueNorth architecture – namely
that all neurons on a core share access to the same set of inputs, and that the number of such inputs
is limited. The network uses a multilayer feedforward scheme, where the first layer consists of input
elements in a rows × columns × channels array, such as an image, and the remaining layers consist
of TrueNorth cores. Connections between layers are made using a sliding window approach.

Input to each core in a layer is drawn from an R × R × F input window (Figure 3A), where R
represents the row and column dimensions, and F represents the feature dimension. For input from
the first layer, rows and columns are in units of input elements and features are input channels,
while for input from the remaining layers rows and columns are in units of cores and features are
neurons. The first core in a given target layer locates its input window in the upper left corner of its
source layer, and the next core in the target layer shifts its input window to the right by a stride of
S. Successive cores slide the window over by S until the edge of the source layer is reached, then
the window is returned to the left, and shifted down by S and the process is repeated. Features are
sub-selected randomly, with the constraint that each neuron can only be selected by one target core.
We allow input elements to be selected multiple times. This scheme is similar in some respects to
that used by a convolution network, but we employ independent synapses for each location. The
specific networks employed here, and associated parameters, are shown in Figure 3A.

5 Results

We applied the training method described above to the MNIST dataset [20], examining accuracy vs.
energy tradeoffs using two networks running on the TrueNorth chip (Figure 3B). The first network is
the smallest multilayer TrueNorth network possible for the number of pixels present in the dataset,
consisting of 5 cores distributed in 2 layers, corresponding to 512 neurons. The second network
was built with a primary goal of maximizing accuracy, and is composed of 30 cores distributed in
4 layers (Figure 3A), corresponding to 3840 neurons. Networks are configured with a first layer
using R = 16 and F = 1 in both networks, and S = 12 in the 5 core network and S = 4 in the 30
core network, while all subsequent layers in both networks use R = 2, F = 64, and S = 1. These
parameters result in a ”pyramid” shape, where all cores from layer 2 to the final layer draw input

7



from 4 source cores and 64 neurons in each of those sources. Each core employs 64 neurons per
core it targets, up to a maximum of 256 neurons.

We tested each network in an ensemble of 1, 4, 16, or 64 members running on a TrueNorth chip in
real-time. Each image was encoded using a single time step (1 ms), with a different spike sampling
used for each input line targeted by a pixel. The instrumentation available measures active power
for the network in operation and leakage power for the entire chip, which consists of 4096 cores.
We report energy numbers as active power plus the fraction of leakage power for the cores in use.

The highest overall performance we observed of 99.42% was achieved with a 30 core trained net-
work using a 64 member ensemble, for a total of 1920 cores, that was measured using 108 µJ per
classification. The lowest energy was achieved by the 5 core network operating in an ensemble of
1, that was measured using 0.268 µJ per classification while achieving 92.70% accuracy. Results
are plotted showing accuracy vs. energy in Figure 3C. Both networks classified 1000 images per
second.

6 Discussion

Our results show that backpropagation operating in a probabilistic domain can be used to train
networks that naturally map to neuromorphic hardware with spiking neurons and extremely low-
precision synapses. Our approach can be succinctly summarized as constrain-then-train, where
we first constrain our network to provide a direct representation of our deployment system and
then train within those constraints. This can be contrasted with a train-then-constrain approach,
where a network agnostic to the final deployment system is first trained, and following training is
constrained through normalization and discretization methods to provide a spiking representation or
low precision weights. While requiring a customized training rule, the constrain-then-train approach
offers the advantage that a decrease in training error has a direct correspondence to a decrease in
error for the deployment network. Conversely, the train-then-constrain approach allows use of off
the shelf training methods, but unconstrained training is not guaranteed to produce a reduction in
error after hardware constraints are applied.

Looking forward, we see several avenues for expanding this approach to more complex datasets.
First, deep convolution networks [20] have seen a great deal of success by using backpropagation
to learn the weights of convolutional filters. The learning method introduced here is independent of
the specific network structure beyond the given sparsity constraint, and could certainly be adapted
for use in convolution networks. Second, biology provides a number of examples, such as the retina
or cochlea, for mapping high-precision sensory data into a binary spiking representation. Drawing
inspiration from such approaches may improve performance beyond the linear mapping scheme used
in this work. Third, this approach may also be adaptable to other gradient based learning methods,
or to methods with existing probabilistic components such as contrastive divergence [21]. Further,
while we describe the use of this approach with TrueNorth to provide a concrete use case, we see
no reason why this training approach cannot be used with other spiking neuromorphic hardware
[4][5][6].

We believe this work is particularly timely, as in recent years backpropagation has achieved a high
level of performance on a number tasks reflecting real world tasks, including object detection in
complex scenes [1], pedestrian detection [2], and speech recognition [3]. A wide range of sensors
are found in mobile devices ranging from phones to automobiles, and platforms like TrueNorth
provide a low power substrate for processing that sensory data. By bridging backpropagation and
energy efficient neuromorphic computing, we hope that the work here provides an important step
towards building low-power, scalable brain-inspired systems with real world applicability.

Acknowledgments

This research was sponsored by the Defense Advanced Research Projects Agency under contracts
No. HR0011- 09-C-0002 and No. FA9453-15-C-0055. The views, opinions, and/or findings con-
tained in this paper are those of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

8



References
[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” Inter-
national Journal of Computer Vision, 2015.

[2] W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in International Conference on
Computer Vision, pp. 2056–2063, 2013.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sen-
gupta, A. Coates, et al., “Deepspeech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[4] B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza,
J. Arthur, P. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-
scale neural simulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[5] E. Painkras, L. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. Lester, A. Brown, and S. Furber,
“SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation,” IEEE
Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013.

[6] T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici, M. Schmuker, D. Brüderle, J. Schem-
mel, and K. Meier, “Six networks on a universal neuromorphic computing substrate,” Frontiers in neuro-
science, vol. 7, 2013.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson,
N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron integrated circuit with a scalable com-
munication network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[8] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Na-
ture, vol. 323, no. 6088, pp. 533–536, 1986.

[9] P. Moerland and E. Fiesler, “Neural network adaptations to hardware implementations,” in Handbook of
neural computation (E. Fiesler and R. Beale, eds.), New York: Institute of Physics Publishing and Oxford
University Publishing, 1997.

[10] E. Fiesler, A. Choudry, and H. J. Caulfield, “Weight discretization paradigm for optical neural networks,”
in The Hague’90, 12-16 April, pp. 164–173, International Society for Optics and Photonics, 1990.

[11] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-efficient object
recognition,” International Journal of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.

[12] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing,” in International Joint Conference on
Neural Networks, 2015, in press.

[13] L. K. Muller and G. Indiveri, “Rounding methods for neural networks with low resolution synaptic
weights,” arXiv preprint arXiv:1504.05767, 2015.

[14] J. Zhao, J. Shawe-Taylor, and M. van Daalen, “Learning in stochastic bit stream neural networks,” Neural
Networks, vol. 9, no. 6, pp. 991 – 998, 1996.

[15] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan, “Training binary multilayer neural networks for image classi-
fication using expectation backpropgation,” arXiv preprint arXiv:1503.03562, 2015.

[16] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S. Furber, “Scalable energy-efficient, low-
latency implementations of spiking deep belief networks on spinnaker,” in International Joint Conference
on Neural Networks, IEEE, 2015, in press.

[17] A. S. Cassidy, P. Merolla, J. V. Arthur, S. Esser, B. Jackson, R. Alvarez-Icaza, P. Datta, J. Sawada, T. M.
Wong, V. Feldman, A. Amir, D. Rubin, F. Akopyan, E. McQuinn, W. Risk, and D. S. Modha, “Cognitive
computing building block: A versatile and efficient digital neuron model for neurosynaptic cores,” in
International Joint Conference on Neural Networks, 2013.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[19] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind
deconvolution,” Neural computation, vol. 7, no. 6, pp. 1129–1159, 1995.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504–507, 2006.

9


