NIPS Proceedingsβ

On-the-Job Learning with Bayesian Decision Theory

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Spotlight

Abstract

Our goal is to deploy a high-accuracy system starting with zero training examples. We consider an “on-the-job” setting, where as inputs arrive, we use real-time crowdsourcing to resolve uncertainty where needed and output our prediction when confident. As the model improves over time, the reliance on crowdsourcing queries decreases. We cast our setting as a stochastic game based on Bayesian decision theory, which allows us to balance latency, cost, and accuracy objectives in a principled way. Computing the optimal policy is intractable, so we develop an approximation based on Monte Carlo Tree Search. We tested our approach on three datasets-- named-entity recognition, sentiment classification, and image classification. On the NER task we obtained more than an order of magnitude reduction in cost compared to full human annotation, while boosting performance relative to the expert provided labels. We also achieve a 8% F1 improvement over having a single human label the whole set, and a 28% F1 improvement over online learning.