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Abstract

Recurrent sequence generators conditioned on input data through an attention
mechanism have recently shown very good performance on a range of tasks in-
cluding machine translation, handwriting synthesis [1, 2] and image caption gen-
eration [3]. We extend the attention-mechanism with features needed for speech
recognition. We show that while an adaptation of the model used for machine
translation in [2] reaches a competitive 18.7% phoneme error rate (PER) on the
TIMIT phoneme recognition task, it can only be applied to utterances which are
roughly as long as the ones it was trained on. We offer a qualitative explanation of
this failure and propose a novel and generic method of adding location-awareness
to the attention mechanism to alleviate this issue. The new method yields a model
that is robust to long inputs and achieves 18% PER in single utterances and 20%
in 10-times longer (repeated) utterances. Finally, we propose a change to the at-
tention mechanism that prevents it from concentrating too much on single frames,
which further reduces PER to 17.6% level.

1 Introduction

Recently, attention-based recurrent networks have been successfully applied to a wide variety of
tasks, such as handwriting synthesis [1], machine translation [2], image caption generation [3] and
visual object classification [4].1 Such models iteratively process their input by selecting relevant
content at every step. This basic idea significantly extends the applicability range of end-to-end
training methods, for instance, making it possible to construct networks with external memory [6, 7].

We introduce extensions to attention-based recurrent networks that make them applicable to speech
recognition. Learning to recognize speech can be viewed as learning to generate a sequence (tran-
scription) given another sequence (speech). From this perspective it is similar to machine translation
and handwriting synthesis tasks, for which attention-based methods have been found suitable [2, 1].
However, compared to machine translation, speech recognition principally differs by requesting
much longer input sequences (thousands of frames instead of dozens of words), which introduces a
challenge of distinguishing similar speech fragments2 in a single utterance. It is also different from
handwriting synthesis, since the input sequence is much noisier and does not have as clear structure.
For these reasons speech recognition is an interesting testbed for developing new attention-based
architectures capable of processing long and noisy inputs.

Application of attention-based models to speech recognition is also an important step toward build-
ing fully end-to-end trainable speech recognition systems, which is an active area of research. The

1An early version of this work was presented at the NIPS 2014 Deep Learning Workshop [5].
2Explained in more detail in Sec. 2.1.
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dominant approach is still based on hybrid systems consisting of a deep neural acoustic model, a tri-
phone HMM model and an n-gram language model [8, 9]. This requires dictionaries of hand-crafted
pronunciation and phoneme lexicons, and a multi-stage training procedure to make the components
work together. Excellent results by an HMM-less recognizer have recently been reported, with the
system consisting of a CTC-trained neural network and a language model [10]. Still, the language
model was added only at the last stage in that work, thus leaving open a question of how much an
acoustic model can benefit from being aware of a language model during training.

In this paper, we evaluate attention-based models on the widely-used TIMIT phoneme recognition
task. For each generated phoneme, an attention mechanism selects or weighs the signals produced
by a trained feature extraction mechanism at potentially all of the time steps in the input sequence
(speech frames). The weighted feature vector then helps to condition the generation of the next
element of the output sequence. Since the utterances in this dataset are rather short (mostly under
5 seconds), we measure the ability of the considered models in recognizing much longer utterances
which were created by artificially concatenating the existing utterances.

We start with a model proposed in [2] for the machine translation task as the baseline. This model
seems entirely vulnerable to the issue of similar speech fragments but despite our expectations it
was competitive on the original test set, reaching 18.7% phoneme error rate (PER). However, its
performance degraded quickly with longer, concatenated utterances. We provide evidence that this
model adapted to track the absolute location in the input sequence of the content it is recognizing, a
strategy feasible for short utterances from the original test set but inherently unscalable.

In order to circumvent this undesired behavior, in this paper, we propose to modify the attention
mechanism such that it explicitly takes into account both (a) the location of the focus from the
previous step, as in [6] and (b) the features of the input sequence, as in [2]. This is achieved by
adding as inputs to the attention mechanism auxiliary convolutional features which are extracted by
convolving the attention weights from the previous step with trainable filters. We show that a model
with such convolutional features performs significantly better on the considered task (18.0% PER).
More importantly, the model with convolutional features robustly recognized utterances many times
longer than the ones from the training set, always staying below 20% PER.

Therefore, the contribution of this work is three-fold. For one, we present a novel purely neural
speech recognition architecture based on an attention mechanism, whose performance is compara-
ble to that of the conventional approaches on the TIMIT dataset. Moreover, we propose a generic
method of adding location awareness to the attention mechanism. Finally, we introduce a modifi-
cation of the attention mechanism to avoid concentrating the attention on a single frame, and thus
avoid obtaining less “effective training examples”, bringing the PER down to 17.6%.

2 Attention-Based Model for Speech Recognition

2.1 General Framework

An attention-based recurrent sequence generator (ARSG) is a recurrent neural network that stochas-
tically generates an output sequence (y1, . . . , yT ) from an input x. In practice, x is often processed
by an encoder which outputs a sequential input representation h = (h1, . . . , hL) more suitable for
the attention mechanism to work with.

In the context of this work, the output y is a sequence of phonemes, and the input x = (x1, . . . , xL′)
is a sequence of feature vectors. Each feature vector is extracted from a small overlapping window
of audio frames. The encoder is implemented as a deep bidirectional recurrent network (BiRNN),
to form a sequential representation h of length L = L′.

At the i-th step an ARSG generates an output yi by focusing on the relevant elements of h:

αi = Attend(si−1, αi−1, h) (1)

gi =

L∑
j=1

αi,jhj (2)

yi ∼ Generate(si−1, gi), (3)
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Figure 1: Two steps of the pro-
posed attention-based recurrent se-
quence generator (ARSG) with a hy-
brid attention mechanism (computing
α), based on both content (h) and lo-
cation (previous α) information. The
dotted lines correspond to Eq. (1),
thick solid lines to Eq. (2) and dashed
lines to Eqs. (3)–(4).

where si−1 is the (i − 1)-th state of the recurrent neural network to which we refer as the gener-
ator, αi ∈ RL is a vector of the attention weights, also often called the alignment [2]. Using the
terminology from [4], we call gi a glimpse. The step is completed by computing a new generator
state:

si = Recurrency(si−1, gi, yi) (4)

Long short-term memory units (LSTM, [11]) and gated recurrent units (GRU, [12]) are typically
used as a recurrent activation, to which we refer as a recurrency. The process is graphically illus-
trated in Fig. 1.

Inspired by [6] we distinguish between location-based, content-based and hybrid attention mecha-
nisms. Attend in Eq. (1) describes the most generic, hybrid attention. If the term αi−1 is dropped
from Attend arguments, i.e., αi = Attend(si−1, h), we call it content-based (see, e.g., [2] or [3]).
In this case, Attend is often implemented by scoring each element in h separately and normalizing
the scores:

ei,j = Score(si−1, hj), (5)

αi,j = exp(ei,j)

/
L∑

j=1

exp(ei,j) . (6)

The main limitation of such scheme is that identical or very similar elements of h are scored equally
regardless of their position in the sequence. This is the issue of “similar speech fragments” raised
above. Often this issue is partially alleviated by an encoder such as e.g. a BiRNN [2] or a deep
convolutional network [3] that encode contextual information into every element of h . However,
capacity of h elements is always limited, and thus disambiguation by context is only possible to a
limited extent.

Alternatively, a location-based attention mechanism computes the alignment from the generator
state and the previous alignment only such that αi = Attend(si−1, αi−1). For instance, Graves
[1] used the location-based attention mechanism using a Gaussian mixture model in his handwriting
synthesis model. In the case of speech recognition, this type of location-based attention mechanism
would have to predict the distance between consequent phonemes using si−1 only, which we expect
to be hard due to large variance of this quantity.

For these limitations associated with both content-based and location-based mechanisms, we argue
that a hybrid attention mechanism is a natural candidate for speech recognition. Informally, we
would like an attention model that uses the previous alignment αi−1 to select a short list of elements
from h, from which the content-based attention, in Eqs. (5)–(6), will select the relevant ones without
confusion.

2.2 Proposed Model: ARSG with Convolutional Features

We start from the ARSG-based model with the content-based attention mechanism proposed in [2].
This model can be described by Eqs. (5)–(6), where

ei,j = w> tanh(Wsi−1 + V hj + b). (7)

w and b are vectors, W and V are matrices.
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We extend this content-based attention mechanism of the original model to be location-aware by
making it take into account the alignment produced at the previous step. First, we extract k vectors
fi,j ∈ Rk for every position j of the previous alignment αi−1 by convolving it with a matrix
F ∈ Rk×r:

fi = F ∗ αi−1. (8)

These additional vectors fi,j are then used by the scoring mechanism ei,j :

ei,j = w> tanh(Wsi−1 + V hj + Ufi,j + b) (9)

2.3 Score Normalization: Sharpening and Smoothing

There are three potential issues with the normalization in Eq. (6).

First, when the input sequence h is long, the glimpse gi is likely to contain noisy information from
many irrelevant feature vectors hj , as the normalized scores αi,j are all positive and sum to 1. This
makes it difficult for the proposed ARSG to focus clearly on a few relevant frames at each time
i. Second, the attention mechanism is required to consider all the L frames each time it decodes a
single output yi while decoding the output of length T , leading to a computational complexity of
O(LT ). This may easily become prohibitively expensive, when input utterances are long (and issue
that is less serious for machine translation, because in that case the input sequence is made of words,
not of 20ms acoustic frames).

The other side of the coin is that the use of softmax normalization in Eq. (6) prefers to mostly focus
on only a single feature vector hj . This prevents the model from aggregating multiple top-scored
frames to form a glimpse gi.

Sharpening There is a straightforward way to address the first issue of a noisy glimpse by “sharp-
ening” the scores αi,j . One way to sharpen the weights is to introduce an inverse temperature β > 1

to the softmax function such that ai,j = exp(βei,j)
/∑L

j=1 exp(βei,j) , or to keep only the top-k
frames according to the scores and re-normalize them. These sharpening methods, however, still
requires us to compute the score of every frame each time (O(LT )), and they worsen the second
issue, of overly narrow focus.

We also propose and investigate a windowing technique. At each time i, the attention mechanism
considers only a subsequence h̃ = (hpi−w, . . . , hpi+w−1) of the whole sequence h, wherew � L is
the predefined window width and pi is the median of the alignment αi−1. The scores for hj /∈ h̃ are
not computed, resulting in a lower complexity of O(L + T ). This windowing technique is similar
to taking the top-k frames, and similarly, has the effect of sharpening.

The proposed sharpening based on windowing can be used both during training and evaluation.
Later, in the experiments, we only consider the case where it is used during evaluation.

Smoothing We observed that the proposed sharpening methods indeed helped with long utter-
ances. However, all of them, and especially selecting the frame with the highest score, negatively
affected the model’s performance on the standard development set which mostly consists of short
utterances. This observations let us hypothesize that it is helpful for the model to aggregate selec-
tions from multiple top-scored frames. In a sense this brings more diversity, i.e., more effective
training examples, to the output part of the model, as more input locations are considered. To facil-
itate this effect, we replace the unbounded exponential function of the softmax function in Eq. (6)
with the bounded logistic sigmoid σ such that ai,j = σ(ei,j)

/∑L
j=1 σ(ei,j) . This has the effect of

smoothing the focus found by the attention mechanism.

3 Related Work

Speech recognizers based on the connectionist temporal classification (CTC, [13]) and its extension,
RNN Transducer [14], are the closest to the ARSG model considered in this paper. They follow
earlier work on end-to-end trainable deep learning over sequences with gradient signals flowing

4



● ●●● ● ● ●
● ●●●

● ● ●
● ●●●

● ● ●

Baseline Conv Feats Smooth Focus

16

17

18

19

1 2 5 10 20 50 100 1 2 5 10 20 50 100 1 2 5 10 20 50 100
Beam widthP

ho
ne

m
e 

E
rr

or
 R

at
e 

[%
]

Dataset

● dev

test

Dependency of error rate on beam search width.

Figure 2: Decoding performance w.r.t. the beam size. For rigorous comparison, if decoding failed
to generate 〈eos〉, we considered it wrongly recognized without retrying with a larger beams size.
The models, especially with smooth focus, perform well even with a beam width as small as 1.

through the alignment process [15]. They have been shown to perform well on the phoneme recog-
nition task [16]. Furthermore, the CTC was recently found to be able to directly transcribe text from
speech without any intermediate phonetic representation [17].

The considered ARSG is different from both the CTC and RNN Transducer in two ways. First,
whereas the attention mechanism deterministically aligns the input and the output sequences, the
CTC and RNN Transducer treat the alignment as a latent random variable over which MAP (max-
imum a posteriori) inference is performed. This deterministic nature of the ARSG’s alignment
mechanism allows beam search procedure to be simpler. Furthermore, we empirically observe that a
much smaller beam width can be used with the deterministic mechanism, which allows faster decod-
ing (see Sec. 4 and Fig. 2). Second, the alignment mechanism of both the CTC and RNN Transducer
is constrained to be “monotonic” to keep marginalization of the alignment tractable. On the other
hand, the proposed attention mechanism can result in non-monotonic alignment, which makes it
suitable for a larger variety of tasks other than speech recognition.

A hybrid attention model using a convolution operation was also proposed in [6] for neural Turing
machines (NTM). At each time step, the NTM computes content-based attention weights which are
then convolved with a predicted shifting distribution. Unlike the NTM’s approach, the hybrid mech-
anism proposed here lets learning figure out how the content-based and location-based addressing
be combined by a deep, parametric function (see Eq. (9).)

Sukhbaatar et al. [18] describes a similar hybrid attention mechanism, where location embeddings
are used as input to the attention model. This approach has an important disadvantage that the model
cannot work with an input sequence longer than those seen during training. Our approach, on the
other hand, works well on sequences many times longer than those seen during training (see Sec. 5.)

4 Experimental Setup

We closely followed the procedure in [16]. All experiments were performed on the TIMIT corpus
[19]. We used the train-dev-test split from the Kaldi [20] TIMIT s5 recipe. We trained on the
standard 462 speaker set with all SA utterances removed and used the 50 speaker dev set for early
stopping. We tested on the 24 speaker core test set. All networks were trained on 40 mel-scale filter-
bank features together with the energy in each frame, and first and second temporal differences,
yielding in total 123 features per frame. Each feature was rescaled to have zero mean and unit
variance over the training set. Networks were trained on the full 61-phone set extended with an
extra “end-of-sequence” token that was appended to each target sequence. Similarly, we appended
an all-zero frame at the end of each input sequence to indicate the end of the utterance. Decoding
was performed using the 61+1 phoneme set, while scoring was done on the 39 phoneme set.

Training Procedure One property of ARSG models is that different subsets of parameters are
reused different number of times; L times for those of the encoder, LT for the attention weights
and T times for all the other parameters of the ARSG. This makes the scales of derivatives w.r.t.
parameters vary significantly. We used an adaptive learning rate algorithm, AdaDelta [21] which
has two hyperparameters ε and ρ. All the weight matrices were initialized from a normal Gaussian
distribution with its standard deviation set to 0.01. Recurrent weights were orthogonalized.

As TIMIT is a relatively small dataset, proper regularization is crucial. We used the adaptive weight
noise as a main regularizer [22]. We first trained our models with a column norm constraint [23] with
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FDHC0_SX209: Michael colored the bedroom wall with crayons.

Figure 3: Alignments produced by the baseline model. The vertical bars indicate ground truth
phone location from TIMIT. Each row of the upper image indicates frames selected by the attention
mechanism to emit a phone symbol. The network has clearly learned to produce a left-to-right
alignment with a tendency to look slightly ahead, and does not confuse between the repeated “kcl-
k” phrase. Best viewed in color.

the maximum norm 1 until the lowest development negative log-likelihood is achieved.3 During this
time, ε and ρ are set to 10−8 and 0.95, respectively. At this point, we began using the adaptive
weight noise, with the model complexity cost LC divided by 10, while disabling the column norm
constraints. Once the new lowest development log-likelihood was reached, we fine-tuned the model
with a smaller ε = 10−10, until we did not observe the improvement in the development phoneme
error rate (PER) for 100K weight updates. Batch size 1 was used throughout the training.

Evaluated Models We evaluated the ARSGs with different attention mechanisms. The encoder
was a 3-layer BiRNN with 256 GRU units in each direction, and the activations of the 512 top-layer
units were used as the representation h. The generator had a single recurrent layer of 256 GRU units.
Generate in Eq. (3) had a hidden layer of 64 maxout units. The initial states of both the encoder
and generator were treated as additional parameters.

Our baseline model is the one with a purely content-based attention mechanism (See Eqs. (5)–(7).)
The scoring network in Eq. (7) had 512 hidden units. The other two models use the convolutional
features in Eq. (8) with k = 10 and r = 201. One of them uses the smoothing from Sec. 2.3.

Decoding Procedure A left-to-right beam search over phoneme sequences was used during de-
coding [24]. Beam search was stopped when the “end-of-sequence” token 〈eos〉 was emitted. We
started with a beam width of 10, increasing it up to 40 when the network failed to produce 〈eos〉with
the narrower beam. As shown in Fig. 2, decoding with a wider beam gives little-to-none benefit.

5 Results

Table 1: Phoneme error rates (PER). The bold-faced PER corresponds to the best error rate with an
attention-based recurrent sequence generator (ARSG) incorporating convolutional attention features
and a smooth focus.

Model Dev Test
Baseline Model 15.9% 18.7%
Baseline + Conv. Features 16.1% 18.0%
Baseline + Conv. Features + Smooth Focus 15.8% 17.6%
RNN Transducer [16] N/A 17.7%
HMM over Time and Frequency Convolutional Net [25] 13.9% 16.7%

All the models achieved competitive PERs (see Table 1). With the convolutional features, we see
3.7% relative improvement over the baseline and further 5.9% with the smoothing.

To our surprise (see Sec. 2.1.), the baseline model learned to align properly. An alignment pro-
duced by the baseline model on a sequence with repeated phonemes (utterance FDHC0 SX209) is
presented in Fig. 3 which demonstrates that the baseline model is not confused by short-range repe-
titions. We can also see from the figure that it prefers to select frames that are near the beginning or

3 Applying the weight noise from the beginning of training caused severe underfitting.
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Figure 4: Results of force-aligning the concatenated utterances. Each dot represents a single utter-
ance created by either concatenating multiple copies of the same utterance, or of different, randomly
chosen utterances. We clearly see that the highest robustness is achieved when the hybrid attention
mechanism is combined with the proposed sharpening technique (see the bottom-right plot.)

even slightly before the phoneme location provided as a part of the dataset. The alignments produced
by the other models were very similar visually.

5.1 Forced Alignment of Long Utterances

The good performance of the baseline model led us to the question of how it distinguishes between
repetitions of similar phoneme sequences and how reliably it decodes longer sequences with more
repetitions. We created two datasets of long utterances; one by repeating each test utterance, and the
other by concatenating randomly chosen utterances. In both cases, the waveforms were cross-faded
with a 0.05s silence inserted as the “pau” phone. We concatenated up to 15 utterances.

First, we checked the forced alignment with these longer utterances by forcing the generator to emit
the correct phonemes. Each alignment was considered correct if 90% of the alignment weight lies
inside the ground-truth phoneme window extended by 20 frames on each side. Under this definition,
all phones but the 〈eos〉 shown in Fig. 3 are properly aligned.

The first column of Fig. 4 shows the number of correctly aligned frames w.r.t. the utterance length
(in frames) for some of the considered models. One can see that the baseline model was able to
decode sequences up to about 120 phones when a single utterance was repeated, and up to about 150
phones when different utterances were concatenated. Even when it failed, it correctly aligned about
50 phones. On the other hand, the model with the hybrid attention mechanism with convolutional
features was able to align sequences up to 200 phones long. However, once it began to fail, the
model was not able to align almost all phones. The model with the smoothing behaved similarly to
the one with convolutional features only.

We examined failed alignments to understand these two different modes of failure. Some of the
examples are shown in the Supplementary Materials.

We found that the baseline model properly aligns about 40 first phones, then makes a jump to the
end of the recording and cycles over the last 10 phones. This behavior suggests that it learned to
track its approximate location in the source sequence. However, the tracking capability is limited to
the lengths observed during training. Once the tracker saturates, it jumps to the end of the recording.

In contrast, when the location-aware network failed it just stopped aligning – no particular frames
were selected for each phone. We attribute this behavior to the issue of noisy glimpse discussed in
Sec. 2.3. With a long utterance there are many irrelevant frames negatively affecting the weight as-
signed to the correct frames. In line with this conjecture, the location-aware network works slightly
better on the repetition of the same utterance, where all frames are somehow relevant, than on the
concatenation of different utterances, where each misaligned frame is irrelevant.

To gain more insight we applied the alignment sharpening schemes described in Sec. 2.3. In the
remaining columns of Fig. 4, we see that the sharpening methods help the location-aware network
to find proper alignments, while they show little effect on the baseline network. The windowing
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Figure 5: Phoneme error rates obtained on decoding long sequences. Each network was de-
coded with alignment sharpening techniques that produced proper forced alignments. The proposed
ARSG’s are clearly more robust to the length of the utterances than the baseline one is.

technique helps both the baseline and location-aware networks, with the location-aware network
properly aligning nearly all sequences.

During visual inspection, we noticed that in the middle of very long utterances the baseline model
was confused by repetitions of similar content within the window, and that such confusions did not
happen in the beginning. This supports our conjecture above.

5.2 Decoding Long Utterances

We evaluated the models on long sequences. Each model was decoded using the alignment sharp-
ening techniques that helped to obtain proper forced alignments. The results are presented in Fig. 5.
The baseline model fails to decode long utterances, even when a narrow window is used to constrain
the alignments it produces. The two other location-aware networks are able to decode utterances
formed by concatenating up to 11 test utterances. Better results were obtained with a wider window,
presumably because it resembles more the training conditions when at each step the attention mech-
anism was seeing the whole input sequence. With the wide window, both of the networks scored
about 20% PER on the long utterances, indicating that the proposed location-aware attention mecha-
nism can scale to sequences much longer than those in the training set with only minor modifications
required at the decoding stage.

6 Conclusions

We proposed and evaluated a novel end-to-end trainable speech recognition architecture based on a
hybrid attention mechanism which combines both content and location information in order to select
the next position in the input sequence for decoding. One desirable property of the proposed model
is that it can recognize utterances much longer than the ones it was trained on. In the future, we
expect this model to be used to directly recognize text from speech [10, 17], in which case it may
become important to incorporate a monolingual language model to the ARSG architecture [26].

This work has contributed two novel ideas for attention mechanisms: a better normalization ap-
proach yielding smoother alignments and a generic principle for extracting and using features from
the previous alignments. Both of these can potentially be applied beyond speech recognition. For
instance, the proposed attention can be used without modification in neural Turing machines, or by
using 2–D convolution instead of 1–D, for improving image caption generation [3].
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