NIPS Proceedingsβ

Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We propose a new first-order optimization algorithm to solve high-dimensional non-smooth composite minimization problems. Typical examples of such problems have an objective that decomposes into a non-smooth empirical risk part and a non-smooth regularization penalty. The proposed algorithm, called Semi-Proximal Mirror-Prox, leverages the saddle point representation of one part of the objective while handling the other part of the objective via linear minimization over the domain. The algorithm stands in contrast with more classical proximal gradient algorithms with smoothing, which require the computation of proximal operators at each iteration and can therefore be impractical for high-dimensional problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds for the number of calls to linear minimization oracle. We present promising experimental results showing the interest of the approach in comparison to competing methods.