
Parallel Correlation Clustering on Big Graphs

Xinghao Pan↵,✏, Dimitris Papailiopoulos↵,✏, Samet Oymak↵,✏,
Benjamin Recht↵,✏,�, Kannan Ramchandran✏, and Michael I. Jordan↵,✏,�

↵AMPLab, ✏EECS at UC Berkeley, �Statistics at UC Berkeley

Abstract

Given a similarity graph between items, correlation clustering (CC) groups similar
items together and dissimilar ones apart. One of the most popular CC algorithms
is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and
obtains a 3-approximation ratio. Unfortunately, in practice KwikCluster requires
a large number of clustering rounds, a potential bottleneck for large graphs.
We present C4 and ClusterWild!, two algorithms for parallel correlation cluster-
ing that run in a polylogarithmic number of rounds, and provably achieve nearly
linear speedups. C4 uses concurrency control to enforce serializability of a par-
allel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is
a coordination free algorithm that abandons consistency for the benefit of better
scaling; this leads to a provably small loss in the 3 approximation ratio.
We demonstrate experimentally that both algorithms outperform the state of the
art, both in terms of clustering accuracy and running time. We show that our
algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while
achieving a 15⇥ speedup.

1 Introduction

Clustering items according to some notion of similarity is a major primitive in machine learning.
Correlation clustering serves as a basic means to achieve this goal: given a similarity measure
between items, the goal is to group similar items together and dissimilar items apart. In contrast to
other clustering approaches, the number of clusters is not determined a priori, and good solutions
aim to balance the tension between grouping all items together versus isolating them.

cluster 1 cluster 2

cost = (#“�” edges inside clusters) + (#“+” edges across clusters) = 2

Figure 1: In the above graph, solid edges denote simi-
larity and dashed dissimilarity. The number of disagree-
ing edges in the above clustering clustering is 2; we
color the bad edges with red.

The simplest CC variant can be described on a
complete signed graph. Our input is a graph
G on n vertices, with +1 weights on edges be-
tween similar items, and �1 edges between dis-
similar ones. Our goal is to generate a partition
of vertices into disjoint sets that minimizes the
number of disagreeing edges: this equals the
number of “+” edges cut by the clusters plus
the number of “�” edges inside the clusters.
This metric is commonly called the number of

disagreements. In Figure 1, we give a toy ex-
ample of a CC instance.

Entity deduplication is the archetypal motivat-
ing example for correlation clustering, with ap-
plications in chat disentanglement, co-reference resolution, and spam detection [1, 2, 3, 4, 5, 6]. The
input is a set of entities (say, results of a keyword search), and a pairwise classifier that indicates—
with some error—similarities between entities. Two results of a keyword search might refer to the
same item, but might look different if they come from different sources. By building a similarity

1

graph between entities and then applying CC, the hope is to cluster duplicate entities in the same
group; in the context of keyword search, this implies a more meaningful and compact list of results.
CC has been further applied to finding communities in signed networks, classifying missing edges
in opinion or trust networks [7, 8], gene clustering [9], and consensus clustering [3].

KwikCluster is the simplest CC algorithm that achieves a provable 3-approximation ratio [10], and
works in the following way: pick a vertex v at random (a cluster center), create a cluster for v
and its positive neighborhood N(v) (i.e., vertices connected to v with positive edges), peel these
vertices and their associated edges from the graph, and repeat until all vertices are clustered. Beyond
its theoretical guarantees, experimentally KwikCluster performs well when combined with local
heuristics [3].

KwikCluster seems like an inherently sequential algorithm, and in most cases of interest it requires
many peeling rounds. This happens because a small number of vertices are clustered per round. This
can be a bottleneck for large graphs. Recently, there have been efforts to develop scalable variants
of KwikCluster [5, 6]. In [6] a distributed peeling algorithm was presented in the context of MapRe-
duce. Using an elegant analysis, the authors establish a (3 + ✏)-approximation in a polylogarithmic
number of rounds. The algorithm employs a simple step that rejects vertices that are executed in
parallel but are “conflicting”; however, we see in our experiments, this seemingly minor coordina-
tion step hinders scale-ups in a parallel core setting. In [5], a sketch of a distributed algorithm was
presented. This algorithm achieves the same approximation as KwikCluster, in a logarithmic num-
ber of rounds, in expectation. However, it performs significant redundant work, per iteration, in its
effort to detect in parallel which vertices should become cluster centers.

Our contributions We present C4 and ClusterWild!, two parallel CC algorithms with provable
performance guarantees, that in practice outperform the state of the art, both in terms of running
time and clustering accuracy. C4 is a parallel version of KwikCluster that uses concurrency control
to establish a 3-approximation ratio. ClusterWild! is a simple to implement, coordination-free
algorithm that abandons consistency for the benefit of better scaling, while having a provably small
loss in the 3 approximation ratio.

C4 achieves a 3 approximation ratio, in a poly-logarithmic number of rounds, by enforcing con-
sistency between concurrently running peeling threads. Consistency is enforced using concurrency

control, a notion extensively studied for databases transactions, that was recently used to parallelize
inherently sequential machine learning algorithms [11].

ClusterWild! is a coordination-free parallel CC algorithm that waives consistency in favor of speed.
The cost we pay is an arbitrarily small loss in ClusterWild!’s accuracy. We show that ClusterWild!

achieves a (3 + ✏)OPT + O(✏ · n · log

2 n) approximation, in a poly-logarithmic number of rounds,
with provable nearly linear speedups. Our main theoretical innovation for ClusterWild! is analyzing
the coordination-free algorithm as a serial variant of KwikCluster that runs on a “noisy” graph.

In our experimental evaluation, we demonstrate that both algorithms gracefully scale up to graphs
with billions of edges. In these large graphs, our algorithms output a valid clustering in less than
5 seconds, on 32 threads, up to an order of magnitude faster than KwikCluster. We observe how,
not unexpectedly, ClusterWild! is faster than C4, and quite surprisingly, abandoning coordination in
this parallel setting, only amounts to a 1% of relative loss in the clustering accuracy. Furthermore,
we compare against state of the art parallel CC algorithms, showing that we consistently outperform
these algorithms in terms of both running time and clustering accuracy.

Notation G denotes a graph with n vertices and m edges. G is complete and only has ±1 edges.
We denote by d

v

the positive degree of a vertex, i.e., the number of vertices connected to v with
positive edges. � denotes the positive maximum degree of G, and N(v) denotes the positive neigh-
borhood of v; moreover, let C

v

= {v,N(v)}. Two vertices u, v are termed as “friends” if u 2 N(v)
and vice versa. We denote by ⇡ a permutation of {1, . . . , n}.

2

2 Two Parallel Algorithms for Correlation Clustering

The formal definition of correlation clustering is given below.

Correlation Clustering. Given a graph G on n vertices, partition the vertices into an arbitrary

number k of disjoint subsets C
1

, . . . , C
k

such that the sum of negative edges within the subsets plus

the sum of positive edges across the subsets is minimized:

OPT = min

1kn

min

Ci\Cj=0,8i 6=j

[k
i=1Ci={1,...,n}

kX

i=1

E�
(C

i

, C
i

) +

kX

i=1

kX

j=i+1

E+

(C
i

, C
j

)

where E+

and E�
are the sets of positive and negative edges in G.

KwikCluster is a remarkably simple algorithm that approximately solves the above combinatorial
problem, and operates as follows. A random vertex v is picked, a cluster C

v

is created with v and
its positive neighborhood, then the vertices in C

v

are peeled from the graph, and this process is
repeated until all vertices are clustered KwikCluster can be equivalently executed, as noted by [5], if
we substitute the random choice of a vertex per peeling round, with a random order ⇡ preassigned to
vertices, (see Alg. 1). That is, select a random permutation on vertices, then peel the vertex indexed
by ⇡(1), and its friends. Remove from ⇡ the vertices in C

v

and repeat this process. Having an order
among vertices makes the discussion of parallel algorithms more convenient.

Algorithm 1 KwikCluster with ⇡

1: ⇡ = a random permutation of {1, . . . , n}
2: while V 6= ; do
3: select the vertex v indexed by ⇡(1)
4: Cv = {v,N(v)}
5: Remove clustered vertices from G and ⇡
6: end while

C4: Parallel CC using Concurency Control.
Suppose we now wish to run a parallel version
of KwikCluster, say on two threads: one thread
picks vertex v indexed by ⇡(1) and the other
thread picks u indexed by ⇡(2), concurrently.
Can both vertices be cluster centers? They can,
iff they are not friends in G. If v and u are con-
nected with a positive edge, then the vertex with
the smallest order wins. This is our concurency

rule no. 1. Now, assume that v and u are not friends in G, and both v and u become cluster centers.
Moreover, assume that v and u have a common, unclustered friend, say w: should w be clustered
with v, or u? We need to follow what would happen with KwikCluster in Alg. 1: w will go with
the vertex that has the smallest permutation number, in this case v. This is concurency rule no. 2.
Following the above simple rules, we develop C4, our serializable parallel CC algorithm. Since, C4

constructs the same clusters as KwikCluster (for a given ordering ⇡), it inherits its 3 approximation.
The above idea of identifying the cluster centers in rounds was first used in [12] to obtain a parallel
algorithm for maximal independent set (MIS).

C4, shown as Alg. 2, starts by assigning a random permutation ⇡ to the vertices, it then samples an
active set A of n

�

unclustered vertices; this sample is taken from the prefix of ⇡. After sampling
A, each of the P threads picks a vertex with the smallest order in A, then checks if that vertex can
become a cluster center. We first enforce concurrency rule no. 1: adjacent vertices cannot be cluster
centers at the same time. C4 enforces it by making each thread check the friends of the vertex, say
v, that is picked from A. A thread will check in attemptCluster whether its vertex v has any
preceding friends that are cluster centers. If there are none, it will go ahead and label v as cluster
center, and proceed with creating a cluster. If a preceding friend of v is a cluster center, then v is
labeled as not being a cluster center. If a preceding friend of v, call it u, has not yet received a
label (i.e., u is currently being processed and is not yet labeled as cluster center or not), then the
thread processing v, will wait on u to receive a label. The major technical detail is in showing that
this wait time is bounded; we show that no more than O(log n) threads can be in conflict at the
same time, using a new subgraph sampling lemma [13]. Since C4 is serializable, it has to respect
concurrency rule no. 2: if a vertex u is adjacency to two cluster centers, then it gets assigned to the
one with smaller permutation order. This is accomplished in createCluster. After processing
all vertices in A, all threads are synchronized in bulk, the clustered vertices are removed, a new
active set is sampled, and the same process is repeated until everything has been clustered. In the
following section, we present the theoretical guarantees for C4.

3

Algorithm 2 C4 & ClusterWild!

1: Input : G, !
2: clusterID(1) = . . . = clusterID(n) = 1
3: " = a random permutation of { 1, . . . , n}
4: while V 6= ; do
5: � = maximum vertex degree in G(V)

6: A = the first ! á n
� vertices in V ["].

7: while A 6= ; do in parallel
8: v = first element in A
9: A = A � { v}

10: if C4 then // concurrency control
11: attemptCluster (v)
12: else if ClusterWild! then // coordination free
13: createCluster (v)
14: end if
15: end while
16: Remove clustered vertices from V and "
17: end while
18: Output: { clusterID(1), . . . , clusterID(n)} .

createCluster(v) :
clusterID(v) = " (v)
for u 2 �(v) \ A do

clusterID(u) = min(clusterID(u), " (v))
end for

attemptCluster (v):
if clusterID(u) = 1 and isCenter (v) then

createCluster(v)
end if

isCenter (v):
for u 2 �(v) do // check friends (in order of ")

if " (u) < " (v) then // if they precede you, wait
wait until clusterID(u) 6= 1 // till clustered
if isCenter (u) then

return 0 //a friend is center, so you can’t be
end if

end if
end for
return 1 // no earlier friends are centers, so you are

ClusterWild!: Coordination-free Correlation Clustering. ClusterWild! speeds up computation
by ignoring the first concurrency rule. It uniformly samples unclustered vertices, and builds clusters
around all of them, without respecting the rule that cluster centers cannot be friends in G. In Clus-

terWild!, threads bypass the attemptCluster routine; this eliminates the “waiting” part of C4.
ClusterWild! samples a set A of vertices from the prefix of ⇡. Each thread picks the first ordered
vertex remaining in A , and using that vertex as a cluster center, it creates a cluster around it. It peels
away the clustered vertices and repeats the same process, on the next remaining vertex in A . At
the end of processing all vertices in A , all threads are synchronized in bulk, the clustered vertices
are removed, a new active set is sampled, and the parallel clustering is repeated. A careful analy-
sis along the lines of [6] shows that the number of rounds (i.e., bulk synchronization steps) is only
poly-logarithmic.

Quite unsurprisingly, ClusterWild! is faster than C4. Interestingly, abandoning consistency does not
incur much loss in the approximation ratio. We show how the error introduced in the accuracy of the
solution can be bounded. We characterize this error theoretically, and show that in practice it only
translates to only a relative 1% loss in the objective. The main intuition of why ClusterWild! does
not introduce too much error is that the chance of two randomly selected vertices being friends is
small, hence the concurrency rules are infrequently broken.

3 Theoretical Guarantees

In this section, we bound the number of rounds required for each algorithms, and establish the
theoretical speedup one can obtain with P parallel threads. We proceed to present our approximation
guarantees. We would like to remind the reader that—as in relevant literature—we consider graphs
that are complete, signed, and unweighted. The omitted proofs can be found in the Appendix.

3.1 Number of rounds and running time

Our analysis follows those of [12] and [6]. The main idea is to track how fast the maximum degree
decreases in the remaining graph at the end of each round.
Lemma 1. C4 and ClusterWild! terminate after O

!
1
! logn álog !

"
rounds w.h.p.

We now analyze the running time of both algorithms under a simplified BSP model. The main idea
is that the the running time of each “super step” (i.e., round) is determined by the “straggling” thread
(i.e., the one that gets assigned the most amount of work), plus the time needed for synchronization
at the end of each round.
Assumption 1. We assume that threads operate asynchronously within a round and synchronize at

the end of a round. A memory cell can be written/read concurrently by multiple threads. The time

4

