## Community Detection via Measure Space Embedding

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

[PDF] [BibTeX] [Supplemental] [Reviews]A note about reviews:"heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

### Authors

### Conference Event Type: Poster

### Abstract

We present a new algorithm for community detection. The algorithm uses random walks to embed the graph in a space of measures, after which a modification of $k$-means in that space is applied. The algorithm is therefore fast and easily parallelizable. We evaluate the algorithm on standard random graph benchmarks, including some overlapping community benchmarks, and find its performance to be better or at least as good as previously known algorithms. We also prove a linear time (in number of edges) guarantee for the algorithm on a $p,q$-stochastic block model with where $p \geq c\cdot N^{-\half + \epsilon}$ and $p-q \geq c' \sqrt{p N^{-\half + \epsilon} \log N}$.