NIPS Proceedingsβ

On the Accuracy of Self-Normalized Log-Linear Models

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Calculation of the log-normalizer is a major computational obstacle in applications of log-linear models with large output spaces. The problem of fast normalizer computation has therefore attracted significant attention in the theoretical and applied machine learning literature. In this paper, we analyze a recently proposed technique known as ``self-normalization'', which introduces a regularization term in training to penalize log normalizers for deviating from zero. This makes it possible to use unnormalized model scores as approximate probabilities. Empirical evidence suggests that self-normalization is extremely effective, but a theoretical understanding of why it should work, and how generally it can be applied, is largely lacking.We prove upper bounds on the loss in accuracy due to self-normalization, describe classes of input distributionsthat self-normalize easily, and construct explicit examples of high-variance input distributions. Our theoretical results make predictions about the difficulty of fitting self-normalized models to several classes of distributions, and we conclude with empirical validation of these predictions on both real and synthetic datasets.