NIPS Proceedingsβ

Learning visual biases from human imagination

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Although the human visual system can recognize many concepts under challengingconditions, it still has some biases. In this paper, we investigate whether wecan extract these biases and transfer them into a machine recognition system.We introduce a novel method that, inspired by well-known tools in humanpsychophysics, estimates the biases that the human visual system might use forrecognition, but in computer vision feature spaces. Our experiments aresurprising, and suggest that classifiers from the human visual system can betransferred into a machine with some success. Since these classifiers seem tocapture favorable biases in the human visual system, we further present an SVMformulation that constrains the orientation of the SVM hyperplane to agree withthe bias from human visual system. Our results suggest that transferring thishuman bias into machines may help object recognition systems generalize acrossdatasets and perform better when very little training data is available.