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Abstract

Asynchronous parallel implementations of stochastic gradient (SG) have been
broadly used in solving deep neural network and received many successes in prac-
tice recently. However, existing theories cannot explain their convergence and
speedup properties, mainly due to the nonconvexity of most deep learning formu-
lations and the asynchronous parallel mechanism. To fill the gaps in theory and
provide theoretical supports, this paper studies two asynchronous parallel imple-
mentations of SG: one is over a computer network and the other is on a shared
memory system. We establish an ergodic convergence rate O(1/

√
K) for both al-

gorithms and prove that the linear speedup is achievable if the number of workers
is bounded by

√
K (K is the total number of iterations). Our results generalize

and improve existing analysis for convex minimization.

1 Introduction
The asynchronous parallel optimization recently received many successes and broad attention in
machine learning and optimization [Niu et al., 2011, Li et al., 2013, 2014b, Yun et al., 2013, Fercoq
and Richtárik, 2013, Zhang and Kwok, 2014, Marecek et al., 2014, Tappenden et al., 2015, Hong,
2014]. It is mainly due to that the asynchronous parallelism largely reduces the system overhead
comparing to the synchronous parallelism. The key idea of the asynchronous parallelism is to allow
all workers work independently and have no need of synchronization or coordination. The asyn-
chronous parallelism has been successfully applied to speedup many state-of-the-art optimization
algorithms including stochastic gradient [Niu et al., 2011, Agarwal and Duchi, 2011, Zhang et al.,
2014, Feyzmahdavian et al., 2015, Paine et al., 2013, Mania et al., 2015], stochastic coordinate de-
scent [Avron et al., 2014, Liu et al., 2014a, Sridhar et al., 2013], dual stochastic coordinate ascent
[Tran et al., 2015], and randomized Kaczmarz algorithm [Liu et al., 2014b].

In this paper, we are particularly interested in the asynchronous parallel stochastic gradient algo-
rithm (ASYSG) for nonconvex optimization mainly due to its recent successes and popularity in
deep neural network [Bengio et al., 2003, Dean et al., 2012, Paine et al., 2013, Zhang et al., 2014,
Li et al., 2014a] and matrix completion [Niu et al., 2011, Petroni and Querzoni, 2014, Yun et al.,
2013]. While some research efforts have been made to study the convergence and speedup properties
of ASYSG for convex optimization, people still know very little about its properties in nonconvex
optimization. Existing theories cannot explain its convergence and excellent speedup property in
practice, mainly due to the nonconvexity of most deep learning formulations and the asynchronous
parallel mechanism. People even have no idea if its convergence is certified for nonconvex optimiza-
tion, although it has been used widely in solving deep neural network and implemented on different
platforms such as computer network and shared memory (for example, multicore and multiGPU)
system.

To fill these gaps in theory, this paper tries to make the first attempt to study ASYSG for the following
nonconvex optimization problem

minx∈Rn f(x) := Eξ[F (x; ξ)] (1)
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where ξ ∈ Ξ is a random variable and f(x) is a smooth (but not necessarily convex) function. The
most common specification is that Ξ is an index set of all training samples Ξ = {1, 2, · · · , N} and
F (x; ξ) is the loss function with respect to the training sample indexed by ξ.

We consider two popular asynchronous parallel implementations of SG: one is for the computer
network originally proposed in [Agarwal and Duchi, 2011] and the other one is for the shared mem-
ory (including multicore/multiGPU) system originally proposed in [Niu et al., 2011]. Note that due
to the architecture diversity, it leads to two different algorithms. The key difference lies on that
the computer network can naturally (also efficiently) ensure the atomicity of reading and writing
the whole vector of x, while the shared memory system is unable to do that efficiently and usually
only ensures efficiency for atomic reading and writing on a single coordinate of parameter x. The
implementation on computer cluster is described by the “consistent asynchronous parallel SG” al-
gorithm (ASYSG-CON), because the value of parameter x used for stochastic gradient evaluation is
consistent – an existing value of parameter x at some time point. Contrarily, we use the “inconsis-
tent asynchronous parallel SG” algorithm (ASYSG-INCON) to describe the implementation on the
shared memory platform, because the value of parameter x used is inconconsistent, that is, it might
not be the real state of x at any time point.

This paper studies the theoretical convergence and speedup properties for both algorithms. We estab-
lish an asymptotic convergence rate of O(1/

√
KM) for ASYSG-CON where K is the total iteration

number and M is the size of minibatch. The linear speedup1 is proved to be achievable while the
number of workers is bounded by O(

√
K). For ASYSG-INCON, we establish an asymptotic con-

vergence and speedup properties similar to ASYSG-CON. The intuition of the linear speedup of
asynchronous parallelism for SG can be explained in the following: Recall that the serial SG es-
sentially uses the “stochastic” gradient to surrogate the accurate gradient. ASYSG brings additional
deviation from the accurate gradient due to using “stale” (or delayed) information. If the additional
deviation is relatively minor to the deviation caused by the “stochastic” in SG, the total iteration
complexity (or convergence rate) of ASYSG would be comparable to the serial SG, which implies a
nearly linear speedup. This is the key reason why ASYSG works.

The main contributions of this paper are highlighted as follows:

• Our result for ASYSG-CON generalizes and improves earlier analysis of ASYSG-CON for convex
optimization in [Agarwal and Duchi, 2011]. Particularly, we improve the upper bound of the max-
imal number of workers to ensure the linear speedup from O(K1/4M−3/4) to O(K1/2M−1/2)
by a factor K1/4M1/4;

• The proposed ASYSG-INCON algorithm provides a more accurate description than HOGWILD!
[Niu et al., 2011] for the lock-free implementation of ASYSG on the shared memory system.
Although our result does not strictly dominate the result for HOGWILD! due to different problem
settings, our result can be applied to more scenarios (e.g., nonconvex optimization);

• Our analysis provides theoretical (convergence and speedup) guarantees for many recent suc-
cesses of ASYSG in deep learning. To the best of our knowledge, this is the first work that offers
such theoretical support.

Notation x∗ denotes the global optimal solution to (1). ‖x‖0 denotes the `0 norm of vector x, that
is, the number of nonzeros in x; ei ∈ Rn denotes the ith natural unit basis vector. We use Eξk,∗(·)
to denote the expectation with respect to a set of variables {ξk,1, · · · , ξk,M}. E(·) means taking the
expectation in terms of all random variables. G(x; ξ) is used to denote ∇F (x; ξ) for short. We use
∇if(x) and (G(x; ξ))i to denote the ith element of∇f(x) and G(x; ξ) respectively.

Assumption Throughout this paper, we make the following assumption for the objective function.
All of them are quite common in the analysis of stochastic gradient algorithms.

Assumption 1. We assume that the following holds:

• (Unbiased Gradient): The stochastic gradient G(x; ξ) is unbiased, that is to say,

∇f(x) = Eξ[G(x; ξ)] (2)

1The speedup for T workers is defined as the ratio between the total work load using one worker and the
average work load using T workers to obtain a solution at the same precision. “The linear speedup is achieved”
means that the speedup with T workers greater than cT for any values of T (c ∈ (0, 1] is a constant independent
to T ).
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• (Bounded Variance): The variance of stochastic gradient is bounded:
Eξ(‖G(x; ξ)−∇f(x)‖2) ≤ σ2, ∀x. (3)

• (Lipschitzian Gradient): The gradient function ∇f(·) is Lipschitzian, that is to say,
‖∇f(x)−∇f(y)‖≤ L‖x− y‖ ∀x, ∀y. (4)

Under the Lipschitzian gradient assumption, we can define two more constants Ls and Lmax. Let
s be any positive integer. Define Ls to be the minimal constant satisfying the following inequality:∥∥∇f (x)−∇f

(
x+

∑
i∈S αiei

)∥∥ ≤ Ls ∥∥∑i∈S αiei
∥∥ , ∀S ⊂ {1, 2, ..., n} and |S|≤ s (5)

Define Lmax as the minimum constant that satisfies:
|∇if(x)−∇if(x+ αei)|≤ Lmax|α|, ∀i ∈ {1, 2, ..., n}. (6)

It can be seen that Lmax ≤ Ls ≤ L.

2 Related Work

This section mainly reviews asynchronous parallel gradient algorithms, and asynchronous parallel
stochastic gradient algorithms and refer readers to the long version of this paper2 for review of
stochastic gradient algorithms and synchronous parallel stochastic gradient algorithms.

The asynchronous parallel algorithms received broad attention in optimization recently, although
pioneer studies started from 1980s [Bertsekas and Tsitsiklis, 1989]. Due to the rapid development
of hardware resources, the asynchronous parallelism recently received many successes when ap-
plied to parallel stochastic gradient [Niu et al., 2011, Agarwal and Duchi, 2011, Zhang et al., 2014,
Feyzmahdavian et al., 2015, Paine et al., 2013], stochastic coordinate descent [Avron et al., 2014, Liu
et al., 2014a], dual stochastic coordinate ascent [Tran et al., 2015], randomized Kaczmarz algorithm
[Liu et al., 2014b], and ADMM [Zhang and Kwok, 2014]. Liu et al. [2014a] and Liu and Wright
[2014] studied the asynchronous parallel stochastic coordinate descent algorithm with consistent
read and inconsistent read respectively and prove the linear speedup is achievable if T ≤ O(n1/2)
for smooth convex functions and T ≤ O(n1/4) for functions with “smooth convex loss + nonsmooth
convex separable regularization”. Avron et al. [2014] studied this asynchronous parallel stochastic
coordinate descent algorithm in solving Ax = b where A is a symmetric positive definite matrix,
and showed that the linear speedup is achievable if T ≤ O(n) for consistent read and T ≤ O(n1/2)
for inconsistent read. Tran et al. [2015] studied a semi-asynchronous parallel version of Stochas-
tic Dual Coordinate Ascent algorithm which periodically enforces primal-dual synchronization in a
separate thread.

We review the asynchronous parallel stochastic gradient algorithms in the last. Agarwal and Duchi
[2011] analyzed the ASYSG-CON algorithm (on computer cluster) for convex smooth optimization
and proved a convergence rate of O(1/

√
MK + MT 2/K) which implies that linear speedup is

achieved when T is bounded by O(K1/4/M3/4). In comparison, our analysis for the more general
nonconvex smooth optimization improves the upper bound by a factor K1/4M1/4. A very recent
work [Feyzmahdavian et al., 2015] extended the analysis in Agarwal and Duchi [2011] to mini-
mize functions in the form “smooth convex loss + nonsmooth convex regularization” and obtained
similar results. Niu et al. [2011] proposed a lock free asynchronous parallel implementation of SG
on the shared memory system and described this implementation as HOGWILD! algorithm. They
proved a sublinear convergence rate O(1/K) for strongly convex smooth objectives. Another re-
cent work Mania et al. [2015] analyzed asynchronous stochastic optimization algorithms for convex
functions by viewing it as a serial algorithm with the input perturbed by bounded noise and proved
the convergences rates no worse than using traditional point of view for several algorithms.

3 Asynchronous parallel stochastic gradient for computer network

This section considers the asynchronous parallel implementation of SG on computer network pro-
posed by Agarwal and Duchi [2011]. It has been successfully applied to the distributed neural
network [Dean et al., 2012] and the parameter server [Li et al., 2014a] to solve deep neural network.

2http://arxiv.org/abs/1506.08272
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3.1 Algorithm Description: ASYSG-CON Algorithm 1 ASYSG-CON

Require: x0, K, {γk}k=0,···,K−1
Ensure: xK

1: for k = 0, · · · ,K − 1 do
2: Randomly select M training samples in-

dexed by ξk,1, ξk,2, ...ξk,M ;
3: xk+1 = xk−γk

∑M
m=1G(xk−τk,m , ξk,m);

4: end for

The “star” in the star-shaped network is a mas-
ter machine3 which maintains the parameter x.
Other machines in the computer network serve
as workers which only communicate with the
master. All workers exchange information with
the master independently and simultaneously,
basically repeating the following steps:

• (Select): randomly select a subset of training samples S ∈ Ξ;
• (Pull): pull parameter x from the master;
• (Compute): compute the stochastic gradient g ←

∑
ξ∈S G(x; ξ);

• (Push): push g to the master.

The master basically repeats the following steps:

• (Aggregate): aggregate a certain amount of stochastic gradients “g” from workers;
• (Sum): summarize all “g”s into a vector ∆;
• (Update): update parameter x by x← x− γ∆.

While the master is aggregating stochastic gradients from workers, it does not care about the sources
of the collected stochastic gradients. As long as the total amount achieves the predefined quantity,
the master will compute ∆ and perform the update on x. The “update” step is performed as an atomic
operation – workers cannot read the value of x during this step, which can be efficiently implemented
in the network (especially in the parameter server [Li et al., 2014a]). The key difference between this
asynchronous parallel implementation of SG and the serial (or synchronous parallel) SG algorithm
lies on that in the “update” step, some stochastic gradients “g” in “∆” might be computed from
some early value of x instead of the current one, while in the serial SG, all g’s are guaranteed to use
the current value of x.

The asynchronous parallel implementation substantially reduces the system overhead and overcomes
the possible large network delay, but the cost is to use the old value of “x” in the stochastic gradient
evaluation. We will show in Section 3.2 that the negative affect of this cost will vanish asymptoti-
cally.

To mathematically characterize this asynchronous parallel implementation, we monitor parameter x
in the master. We use the subscript k to indicate the kth iteration on the master. For example, xk
denotes the value of parameter x after k updates, so on and so forth. We introduce a variable τk,m
to denote how many delays for x used in evaluating the mth stochastic gradient at the kth iteration.
This asynchronous parallel implementation of SG on the “star-shaped” network is summarized by
the ASYSG-CON algorithm, see Algorithm 1. The suffix “CON” is short for “consistent read”.
“Consistent read” means that the value of x used to compute the stochastic gradient is a real state
of x no matter at which time point. “Consistent read” is ensured by the atomicity of the “update”
step. When the atomicity fails, it leads to “inconsistent read” which will be discussed in Section 4.
It is worth noting that on some “non-star” structures the asynchronous implementation can also
be described as ASYSG-CON in Algorithm 1, for example, the cyclic delayed architecture and the
locally averaged delayed architecture [Agarwal and Duchi, 2011, Figure 2] .

3.2 Analysis for ASYSG-CON

To analyze Algorithm 1, besides Assumption 1 we make the following additional assumptions.

Assumption 2. We assume that the following holds:

• (Independence): All random variables in {ξk,m}k=0,1,···,K;m=1,···,M in Algorithm 1 are inde-
pendent to each other;

• (Bounded Age): All delay variables τk,m’s are bounded: maxk,m τk,m ≤ T .

The independence assumption strictly holds if all workers select samples with replacement. Al-
though it might not be satisfied strictly in practice, it is a common assumption made for the analysis

3There could be more than one machines in some networks, but all of them serves the same purpose and
can be treated as a single machine.
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purpose. The bounded delay assumption is much more important. As pointed out before, the asyn-
chronous implementation may use some old value of parameter x to evaluate the stochastic gradient.
Intuitively, the age (or “oldness”) should not be too large to ensure the convergence. Therefore, it
is a natural and reasonable idea to assume an upper bound for ages. This assumption is commonly
used in the analysis for asynchronous algorithms, for example, [Niu et al., 2011, Avron et al., 2014,
Liu and Wright, 2014, Liu et al., 2014a, Feyzmahdavian et al., 2015, Liu et al., 2014b]. It is worth
noting that the upper bound T is roughly proportional to the number of workers.

Under Assumptions 1 and 2, we have the following convergence rate for nonconvex optimization.
Theorem 1. Assume that Assumptions 1 and 2 hold and the steplength sequence {γk}k=1,···,K in
Algorithm 1 satisfies

LMγk + 2L2M2Tγk
∑T
κ=1 γk+κ ≤ 1 for all k = 1, 2, .... (7)

We have the following ergodic convergence rate for the iteration of Algorithm 1

1∑K
k=1 γk

∑K
k=1 γkE(‖∇f(xk)‖2) ≤ 2(f(x1)−f(x∗))+

∑K
k=1(γ

2
kML+2L2M2γk

∑k−1
j=k−T γ

2
j )σ

2

M
∑K
k=1 γk

. (8)

where E(·) denotes taking expectation in terms of all random variables in Algorithm 1.

To evaluate the convergence rate, the commonly used metrics in convex optimization are not eligi-
ble, for example, f(xk) − f∗ and ‖xk − x∗‖2. For nonsmooth optimization, we use the ergodic
convergence as the metric, that is, the weighted average of the `2 norm of all gradients ‖∇f(xk)‖2,
which is used in the analysis for nonconvex optimization [Ghadimi and Lan, 2013]. Although the
metric used in nonconvex optimization is not exactly comparable to f(xk)− f∗ or ‖xk−x∗‖2 used
in the analysis for convex optimization, it is not totally unreasonable to think that they are roughly
in the same order. The ergodic convergence directly indicates the following convergence: If ran-
domly select an index K̃ from {1, 2, · · · ,K} with probability {γk/

∑K
k=1 γk}, then E(‖∇f(xK̃)‖2)

is bounded by the right hand side of (8) and all bounds we will show in the following.

Taking a close look at Theorem 1, we can properly choose the steplength γk as a constant value and
obtain the following convergence rate:
Corollary 2. Assume that Assumptions 1 and 2 hold. Set the steplength γk to be a constant γ

γ :=
√
f(x1)− f(x∗)/(MLKσ2). (9)

If the delay parameter T is bounded by

K ≥ 4ML(f(x1)− f(x∗))(T + 1)2/σ2, (10)

then the output of Algorithm 1 satisfies the following ergodic convergence rate

mink∈{1,···,K} E‖∇f(xk)‖2≤ 1
K

∑K
k=1 E‖∇f(xk)‖2≤ 4

√
(f(x1)− f(x∗))L/(MK)σ. (11)

This corollary basically claims that when the total iteration number K is greater than O(T 2), the
convergence rate achieves O(1/

√
MK). Since this rate does not depend on the delay parameter

T after sufficient number of iterations, the negative effect of using old values of x for stochastic
gradient evaluation vanishes asymptoticly. In other words, if the total number of workers is bounded
by O(

√
K/M), the linear speedup is achieved.

Note that our convergence rate O(1/
√
MK) is consistent with the serial SG (with M = 1) for

convex optimization [Nemirovski et al., 2009], the synchronous parallel (or mini-batch) SG for
convex optimization [Dekel et al., 2012], and nonconvex smooth optimization [Ghadimi and Lan,
2013]. Therefore, an important observation is that as long as the number of workers (which is
proportional to T ) is bounded byO(

√
K/M), the iteration complexity to achieve the same accuracy

level will be roughly the same. In other words, the average work load for each worker is reduced
by the factor T comparing to the serial SG. Therefore, the linear speedup is achievable if T ≤
O(
√
K/M). Since our convergence rate meets several special cases, it is tight.

Next we compare with the analysis of ASYSG-CON for convex smooth optimization in Agarwal
and Duchi [2011, Corollary 2]. They proved an asymptotic convergence rate O(1/

√
MK), which

is consistent with ours. But their results require T ≤ O(K1/4M−3/4) to guarantee linear speedup.
Our result improves it by a factor O(K1/4M1/4).
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4 Asynchronous parallel stochastic gradient for shared memory architecture
This section considers a widely used lock-free asynchronous implementation of SG on the shared
memory system proposed in Niu et al. [2011]. Its advantages have been witnessed in solving SVM,
graph cuts [Niu et al., 2011], linear equations [Liu et al., 2014b], and matrix completion [Petroni
and Querzoni, 2014]. While the computer network always involves multiple machines, the shared
memory platform usually only includes a single machine with multiple cores / GPUs sharing the
same memory.

4.1 Algorithm Description: ASYSG-INCON
Algorithm 2 ASYSG-INCON

Require: x0, K, γ
Ensure: xK

1: for k = 0, · · · ,K − 1 do
2: Randomly selectM training samples indexed

by ξk,1, ξk,2, ...ξk,M ;
3: Randomly select ik ∈ {1, 2, ..., n} with uni-

form distribution;
4: (xk+1)ik = (xk)ik −γ

∑M
m=1(G(x̂k,m; ξk,m))ik ;

5: end for

For the shared memory platform, one can ex-
actly follow ASYSG-CON on the computer
network using software locks, which is ex-
pensive4. Therefore, in practice the lock free
asynchronous parallel implementation of SG
is preferred. This section considers the same
implementation as Niu et al. [2011], but pro-
vides a more precise algorithm description
ASYSG-INCON than HOGWILD! proposed in Niu et al. [2011].

In this lock free implementation, the shared memory stores the parameter “x” and allows all workers
reading and modifying parameter x simultaneously without using locks. All workers repeat the
following steps independently, concurrently, and simultaneously:

• (Read): read the parameter from the shared memory to the local memory without software locks
(we use x̂ to denote its value);

• (Compute): sample a training data ξ and use x̂ to compute the stochastic gradientG(x̂; ξ) locally;
• (Update): update parameter x in the shared memory without software locks x← x− γG(x̂; ξ).

Since we do not use locks in both “read” and “update” steps, it means that multiple workers may
manipulate the shared memory simultaneously. It causes the “inconsistent read” at the “read” step,
that is, the value of x̂ read from the shared memory might not be any state of x in the shared
memory at any time point. For example, at time 0, the original value of x in the shared memory is a
two dimensional vector [a, b]; at time 1, worker W is running the “read” step and first reads a from
the shared memory; at time 2, worker W ′ updates the first component of x in the shared memory
from a to a′; at time 2, worker W ′ updates the second component of x in the shared memory from
b to b′; at time 3, worker W reads the value of the second component of x in the shared memory as
b′. In this case, worker W eventually obtains the value of x̂ as [a, b′], which is not a real state of x
in the shared memory at any time point. Recall that in ASYSG-CON the parameter value obtained
by any worker is guaranteed to be some real value of parameter x at some time point.

To precisely characterize this implementation and especially represent x̂, we monitor the value of
parameter x in the shared memory. We define one iteration as a modification on any single com-
ponent of x in the shared memory since the update on a single component can be considered to be
atomic on GPUs and DSPs [Niu et al., 2011]. We use xk to denote the value of parameter x in the
shared memory after k iterations and x̂k to denote the value read from the shared memory and used
for computing stochastic gradient at the kth iteration. x̂k can be represented by xk with a few earlier
updates missing

x̂k = xk −
∑
j∈J(k)(xj+1 − xj) (12)

where J(k) ⊂ {k − 1, k, · · · , 0} is a subset of index numbers of previous iterations. This way is
also used in analyzing asynchronous parallel coordinate descent algorithms in [Avron et al., 2014,
Liu and Wright, 2014]. The kth update happened in the shared memory can be described as

(xk+1)ik = (xk)ik − γ(G(x̂k; ξk))ik

where ξk denotes the index of the selected data and ik denotes the index of the component being
updated at kth iteration. In the original analysis for the HOGWILD! implementation [Niu et al.,
2011], x̂k is assumed to be some earlier state of x in the shared memory (that is, the consistent read)
for simpler analysis, although it is not true in practice.

4The time consumed by locks is roughly equal to the time of 104 floating-point computation. The additional
cost for using locks is the waiting time during which multiple worker access the same memory address.
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One more complication is to apply the mini-batch strategy like before. Since the “update” step
needs physical modification in the shared memory, it is usually much more time consuming than
both “read” and “compute” steps are. If many workers run the “update” step simultaneously, the
memory contention will seriously harm the performance. To reduce the risk of memory contention,
a common trick is to ask each worker to gather multiple (say M ) stochastic gradients and write the
shared memory only once. That is, in each cycle, run both “update” and “compute” steps for M
times before you run the “update” step. Thus, the mini-batch updates happen in the shared memory
can be written as

(xk+1)ik = (xk)ik − γ
∑M
m=1(G(x̂k,m; ξk,m))ik (13)

where ik denotes the coordinate index updated at the kth iteration, and G(x̂k,m; ξk,m) is the mth
stochastic gradient computed from the data sample indexed by ξk,m and the parameter value denoted
by x̂k,m at the kth iteration. x̂k,m can be expressed by:

x̂k,m = xk −
∑
j∈J(k,m)(xj+1 − xj) (14)

where J(k,m) ⊂ {k − 1, k, · · · , 0} is a subset of index numbers of previous iterations. The algo-
rithm is summarized in Algorithm 2 from the view of the shared memory.

4.2 Analysis for ASYSG-INCON

To analyze the ASYSG-INCON, we need to make a few assumptions similar to Niu et al. [2011], Liu
et al. [2014b], Avron et al. [2014], Liu and Wright [2014].

Assumption 3. We assume that the following holds for Algorithm 2:

• (Independence): All groups of variables {ik, {ξk,m}Mm=1} at different iterations from k = 1 to
K are independent to each other.

• (Bounded Age): Let T be the global bound for delay: J(k,m) ⊂ {k − 1, ...k − T}, ∀k, ∀m,
so |J(k,m)|≤ T .

The independence assumption might not be true in practice, but it is probably the best assumption
one can make in order to analyze the asynchronous parallel SG algorithm. This assumption was also
used in the analysis for HOGWILD! [Niu et al., 2011] and asynchronous randomized Kaczmarz al-
gorithm [Liu et al., 2014b]. The bounded delay assumption basically restricts the age of all missing
components in x̂k,m (∀m, ∀k). The upper bound “T ” here serves a similar purpose as in Assump-
tion 2. Thus we abuse this notation in this section. The value of T is proportional to the number of
workers and does not depend on the size of mini-batch M . The bounded age assumption is used in
the analysis for asynchronous stochastic coordinate descent with “inconsistent read” [Avron et al.,
2014, Liu and Wright, 2014]. Under Assumptions 1 and 3, we have the following results:

Theorem 3. Assume that Assumptions 1 and 3 hold and the constant steplength γ satisfies

2M2TL2
T (
√
n+ T − 1)γ2/n3/2 + 2MLmaxγ ≤ 1. (15)

We have the following ergodic convergence rate for Algorithm 2

1
K

∑K
t=1 E

(
‖∇f(xt)‖2

)
≤ 2n

KMγ (f(x1)− f(x∗)) +
L2
TTMγ2

2n σ2 + Lmaxγσ
2. (16)

Taking a close look at Theorem 3, we can choose the steplength γ properly and obtain the following
error bound:

Corollary 4. Assume that Assumptions 1 and 3 hold. Set the steplength to be a constant γ

γ :=
√

2(f(x1)− f(x∗))n/(
√
KLTMσ). (17)

If the total iterations K is greater than

K ≥ 16(f(x1)− f(x∗))LTM
(
n3/2 + 4T 2

)
/(
√
nσ2), (18)

then the output of Algorithm 2 satisfies the following ergodic convergence rate

1
K

∑K
k=1 E(‖∇f(xk)‖2) ≤

√
72 (f (x1)− f (x∗))LTn/(KM)σ. (19)
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This corollary indicates the asymptotic convergence rate achieves O(1/
√
MK) when the total iter-

ation number K exceeds a threshold in the order of O(T 2) (if n is considered as a constant). We
can see that this rate and the threshold are consistent with the result in Corollary 2 for ASYSG-CON.
One may argue that why there is an additional factor

√
n in the numerator of (19). That is due to the

way we count iterations – one iteration is defined as updating a single component of x. If we take
into account this factor in the comparison to ASYSG-CON, the convergence rates for ASYSG-CON
and ASYSG-INCON are essentially consistent. This comparison implies that the “inconsistent read”
would not make a big difference from the “consistent read”.

Next we compare our result with the analysis of HOGWILD! by [Niu et al., 2011]. In principle,
our analysis and their analysis consider the same implementation of asynchronous parallel SG, but
differ in the following aspects: 1) our analysis considers the smooth nonconvex optimization which
includes the smooth strongly convex optimization considered in their analysis; 2) our analysis con-
siders the “inconsistent read” model which meets the practice while their analysis assumes the im-
practical “consistent read” model. Although the two results are not absolutely comparable, it is still
interesting to see the difference. Niu et al. [2011] proved that the linear speedup is achievable if the
maximal number of nonzeros in stochastic gradients is bounded by O(1) and the number of work-
ers is bounded by O(n1/4). Our analysis does not need this prerequisite and guarantees the linear
speedup as long as the number of workers is bounded byO(

√
K). Although it is hard to say that our

result strictly dominates HOGWILD! in Niu et al. [2011], our asymptotic result is eligible for more
scenarios.

5 Experiments

The successes of ASYSG-CON and ASYSG-INCON and their advantages over synchronous parallel
algorithms have been widely witnessed in many applications such as deep neural network [Dean
et al., 2012, Paine et al., 2013, Zhang et al., 2014, Li et al., 2014a], matrix completion [Niu et al.,
2011, Petroni and Querzoni, 2014, Yun et al., 2013], SVM [Niu et al., 2011], and linear equations
[Liu et al., 2014b]. We refer readers to these literatures for more comphrehensive comparison and
empirical studies. This section mainly provides the empirical study to validate the speedup proper-
ties for completeness. Due to the space limit, please find it in Supplemental Materials.

6 Conclusion

This paper studied two popular asynchronous parallel implementations for SG on computer cluster
and shared memory system respectively. Two algorithms (ASYSG-CON and ASYSG-INCON) are
used to describe two implementations. An asymptotic sublinear convergence rate is proven for
both algorithms on nonconvex smooth optimization. This rate is consistent with the result of SG
for convex optimization. The linear speedup is proven to achievable when the number of workers
is bounded by

√
K, which improves the earlier analysis of ASYSG-CON for convex optimization

in [Agarwal and Duchi, 2011]. The proposed ASYSG-INCON algorithm provides a more precise
description for lock free implementation on shared memory system than HOGWILD! [Niu et al.,
2011]. Our result for ASYSG-INCON can be applied to more scenarios.
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