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Abstract

There is renewed interest in formulating integration as a statistical inference prob-
lem, motivated by obtaining a full distribution over numerical error that can be
propagated through subsequent computation. Current methods, such as Bayesian
Quadrature, demonstrate impressive empirical performance but lack theoretical
analysis. An important challenge is therefore to reconcile these probabilistic in-
tegrators with rigorous convergence guarantees. In this paper, we present the first
probabilistic integrator that admits such theoretical treatment, called Frank-Wolfe
Bayesian Quadrature (FWBQ). Under FWBQ, convergence to the true value of
the integral is shown to be up to exponential and posterior contraction rates are
proven to be up to super-exponential. In simulations, FWBQ is competitive with
state-of-the-art methods and out-performs alternatives based on Frank-Wolfe op-
timisation. Our approach is applied to successfully quantify numerical error in the
solution to a challenging Bayesian model choice problem in cellular biology.

1 Introduction

Computing integrals is a core challenge in machine learning and numerical methods play a central
role in this area. This can be problematic when a numerical integration routine is repeatedly called,
maybe millions of times, within a larger computational pipeline. In such situations, the cumulative
impact of numerical errors can be unclear, especially in cases where the error has a non-trivial
structural component. One solution is to model the numerical error statistically and to propagate
this source of uncertainty through subsequent computations. Conversely, an understanding of how
errors arise and propagate can enable the efficient focusing of computational resources upon the
most challenging numerical integrals in a pipeline.

Classical numerical integration schemes do not account for prior information on the integrand and,
as a consequence, can require an excessive number of function evaluations to obtain a prescribed
level of accuracy [21]]. Alternatives such as Quasi-Monte Carlo (QMC) can exploit knowledge on
the smoothness of the integrand to obtain optimal convergence rates [7]. However these optimal
rates can only hold on sub-sequences of sample sizes n, a consequence of the fact that all function
evaluations are weighted equally in the estimator [[24]. A modern approach that avoids this problem
is to consider arbitrarily weighted combinations of function values; the so-called quadrature rules
(also called cubature rules). Whilst quadrature rules with non-equal weights have received compar-
atively little theoretical attention, it is known that the extra flexibility given by arbitrary weights can



lead to extremely accurate approximations in many settings (see applications to image de-noising
[3] and mental simulation in psychology [[13]]).

Probabilistic numerics, introduced in the seminal paper of [6], aims at re-interpreting numerical
tasks as inference tasks that are amenable to statistical analysisﬂ Recent developments include
probabilistic solvers for linear systems [[14] and differential equations [} 26]]. For the task of com-
puting integrals, Bayesian Quadrature (BQ) [22] and more recent work by [20]] provide probabilistic
numerics methods that produce a full posterior distribution on the output of numerical schemes. One
advantage of this approach is that we can propagate uncertainty through all subsequent computations
to explicitly model the impact of numerical error [15]. Contrast this with chaining together classical
error bounds; the result in such cases will typically be a weak bound that provides no insight into the
error structure. At present, a significant shortcoming of these methods is the absence of theoretical
results relating to rates of posterior contraction. This is unsatisfying and has likely hindered the
adoption of probabilistic approaches to integration, since it is not clear that the induced posteriors
represent a sensible quantification of the numerical error (by classical, frequentist standards).

This paper establishes convergence rates for a new probabilistic approach to integration. Our re-
sults thus overcome a key perceived weakness associated with probabilistic numerics in the quadra-
ture setting. Our starting point is recent work by [2], who cast the design of quadrature rules as
a problem in convex optimisation that can be solved using the Frank-Wolfe (FW) algorithm. We
propose a hybrid approach of [2] with BQ, taking the form of a quadrature rule, that (i) carries a
full probabilistic interpretation, (ii) is amenable to rigorous theoretical analysis, and (iii) converges
orders-of-magnitude faster, empirically, compared with the original approaches in [2]]. In particular,
we prove that super-exponential rates hold for posterior contraction (concentration of the posterior
probability mass on the true value of the integral), showing that the posterior distribution provides
a sensible and effective quantification of the uncertainty arising from numerical error. The method-
ology is explored in simulations and also applied to a challenging model selection problem from
cellular biology, where numerical error could lead to mis-allocation of expensive resources.

2 Background

2.1 Quadrature and Cubature Methods

Let X C R? be a measurable space such that d € N and consider a probability density p(x) defined
with respect to the Lebesgue measure on &X'. This paper focuses on computing integrals of the form
J f(x)p(x)dz for a test function f : X — R where, for simplicity, we assume [ is square-integrable
with respect to p(x). A quadrature rule approximates such integrals as a weighted sum of function
values at some design points {z;}?; C A
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Viewing integrals as projections, we write p[f] for the left-hand side and p| f] for the right-hand side,
where p = > w;8(z;) and 6(x;) is a Dirac measure at ;. Note that p may not be a probability
distribution; in fact, weights {w;}?_; do not have to sum to one or be non-negative. Quadrature
rules can be extended to multivariate functions f : X — R? by taking each component in turn.

There are many ways of choosing combinations {x;, w;}?_; in the literature. For example, taking
weights to be w; = 1/n with points {z;}?_; drawn independently from the probability distribution
p(z) recovers basic Monte Carlo integration. The case with weights w; = 1/n, but with points cho-
sen with respect to some specific (possibly deterministic) schemes includes kernel herding [4] and
Quasi-Monte Carlo (QMC) [7]]. In Bayesian Quadrature, the points {z;}! ; are chosen to minimise
a posterior variance, with weights {w; }? ; arising from a posterior probability distribution.

Classical error analysis for quadrature rules is naturally couched in terms of minimising the worst-
case estimation error. Let 7{ be a Hilbert space of functions f : X — R, equipped with the inner

'A detailed discussion on probabilistic numerics and an extensive up-to-date bibliography can be found at
http://www.probabilistic-numerics.org,
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product (-, -)3 and associated norm || - ||3;. We define the maximum mean discrepancy (MMD) as:

MMD ({z;, wi}i—y) = sup [p[f] = plf]]. ©)
Fer:|flln=1

The reader can refer to [27]] for conditions on H that are needed for the existence of the MMD. The
rate at which the MMD decreases with the number of samples n is referred to as the ‘convergence
rate’ of the quadrature rule. For Monte Carlo, the MMD decreases with the slow rate of Op (n‘l/ 2)
(where the subscript P specifies that the convergence is in probability). Let H be a RKHS with
reproducing kernel k£ : X x X — R and denote the corresponding canonical feature map by ®(x) =
k(-, x), so that the mean element is given by p,(x) = p[®(x)] € H. Then, following [27]

MMD ({zs, wi}i—y) = lip — fapll2e- (3)

This shows that to obtain low integration error in the RKHS 7, one only needs to obtain a good
approximation of its mean element p, (as Vf € H: p[f] = (f, up)n). Establishing theoretical
results for such quadrature rules is an active area of research [1].

2.2 Bayesian Quadrature

Bayesian Quadrature (BQ) was originally introduced in [22] and later revisited by [11,[12] and [23].
The main idea is to place a functional prior on the integrand f, then update this prior through Bayes’
theorem by conditioning on both samples {z;}!" ; and function evaluations at those sample points
{f;}?_, where f; = f(x;). This induces a full posterior distribution over functions f and hence over
the value of the integral p[f]. The most common implementation assumes a Gaussian Process (GP)
prior f ~ GP(0, k). A useful property motivating the use of GPs is that linear projection preserves
normality, so that the posterior distribution for the integral p|[f] is also a Gaussian, characterised by
its mean and covariance. A natural estimate of the integral p[f] is given by the mean of this posterior
distribution, which can be compactly written as

peolf] =z K~'f. 4)

where z; = pp,(z;) and K;; = k(z;, x;). Notice that this estimator takes the form of a quadrature
rule with weights wBQ = z7 K —1. Recently, [25] showed how specific choices of kernel and design
points for BQ can recover classical quadrature rules. This begs the question of how to select design
points {x;}? ;. A particularly natural approach aims to minimise the posterior uncertainty over the
integral p[f], which was shown in [16], Prop. 1] to equal:

vso({wi}izy) = pluy) — 2" K"z = MMD? ({z;, wi}iLy). (5)

Thus, in the RKHS setting, minimising the posterior variance corresponds to minimising the worst
case error of the quadrature rule. Below we refer to Optimal BQ (OBQ) as BQ coupled with design
points {z22}™_| chosen to globally minimise (5). We also call Sequential BQ (SBQ) the algorithm
that greedily selects design points to give the greatest decrease in posterior variance at each iteration.
OBQ will give improved results over SBQ, but cannot be implemented in general, whereas SBQ is
comparatively straight-forward to implement. There are currently no theoretical results establishing

the convergence of either BQ, OBQ or SBQ.

Remark: (9 is independent of observed function values {. As such, no active learning is possible in
SBQ (i.e. surprising function values never cause a revision of a planned sampling schedule). This
is not always the case: For example [12]] approximately encodes non-negativity of f into BQ which
leads to a dependence on f in the posterior variance. In this case sequential selection becomes an
active strategy that outperforms batch selection in general.

2.3 Deriving Quadrature Rules via the Frank-Wolfe Algorithm

Despite the elegance of BQ, its convergence rates have not yet been rigorously established. In brief,
this is because ppg[f] is an orthogonal projection of f onto the affine hull of {®(x;)}}_,, rather than
e.g. the convex hull. Standard results from the optimisation literature apply to bounded domains, but
the affine hull is not bounded (i.e. the BQ weights can be arbitrarily large and possibly negative).
Below we describe a solution to the problem of computing integrals recently proposed by [2], based
on the FW algorithm, that restricts attention to the (bounded) convex hull of {®(x;)} ;.



Algorithm 1 The Frank-Wolfe (FW) and Frank-Wolfe with Line-Search (FWLS) Algorithms.
Require: function J, initial state g1 = g1 € G (and, for FW only: step-size sequence {p; }}_;).
1: for i=2,...,n do
2 Compute g; = argmingeg<g, (DJ)(gi—1)>X
3 [For FWLS only, line search: p; = argminpe[oﬁl]J((l —p)gi—1+pGi)]
4: Update g; = (1 — p;)gi—1 + piGi
5: end for

The Frank-Wolfe (FW) algorithm (Alg. [T)), also called the conditional gradient algorithm, is a convex
optimization method introduced in [9]. It considers problems of the form mingeg J(g) where the
function J : G — R is convex and continuously differentiable. A particular case of interest in this
paper will be when the domain G is a compact and convex space of functions, as recently investigated
in [17]. These assumptions imply the existence of a solution to the optimization problem.

In order to define the algorithm rigorously in this case, we introduce the Fréchet derivative of J,
denoted D.J, such that for * being the dual space of #, we have the unique map DJ : H — H*
such that for each g € H, (D.J)(g) is the function mapping h € H to (D.J)(g)(h) = (g — u, h),,
We also introduce the bilinear map (-,-)x : H X H* — R which, for ' € H* given by F(g) =
<g7 f>7'l’ iS the rule glVlng <h? F>>< = <h7 f>7‘l

At each iteration 7, the FW algorithm computes a linearisation of the objective function J at the
previous state g;_1 € G along its gradient (DJ)(g;—1) and selects an ‘atom’ g; € G that minimises
the inner product a state g and (DJ)(g;—1). The new state g; € G is then a convex combination of
the previous state g;—; and of the atom g;. This convex combination depends on a step-size p; which
is pre-determined and different versions of the algorithm may have different step-size sequences.

Our goal in quadrature is to approximate the mean element f,. Recently [2] proposed to frame
integration as a FW optimisation problem. Here, the domain G C H is a space of functions and
taking the objective function to be:

1
J(9) = 3llg = poll3 ©)

This gives an approximation of the mean element and .J takes the form of half the posterior variance
(or the MMD?). In this functional approximation setting, minimisation of .J is carried out over
G = M, the marginal polytope of the RKHS H. The marginal polytope M is defined as the
closure of the convex hull of ®(X'), so that in particular ;, € M. Assuming as in [18] that ®(z) is
uniformly bounded in feature space (i.e. 3R > 0 : Vax € X, ||®(x)|lx < R), then M is a closed
and bounded set and can be optimised over.

A particular advantage of this method is that it leads to ‘sparse’ solutions which are linear combina-
tions of the atoms {g; }7; [2]. In particular this provides a weighted estimate for the mean element:

n n
ﬂFW Izgn:Z( H (17/)] 1/)1 1)91- Zw Gis (7)
i=1  j=it1

where by default py = 1 which leads to all wfV € [0, 1] when p; = 1 / (l +1). A typical sequence of
approximations to the mean element is shown in Fig. (1] (left), demonstrating that the approximation
quickly converges to the ground truth (in black). Since minimisation of a linear functlon can be
restricted to extreme points of the domain, the atoms will be of the form g; = ®(2fV) = k(-, 2tV)
for some zfY € X. The minimisation in g over G from step 2 in Algorlthmtherefore becomes a
minimisatlon in z over X and this algorithm therefore provides us design points. In practice, at each
iteration 7, the FW algorithm hence selects a design point zfW € X which induces an atom g; and
gives us an approximation of the mean element p,,. We denote by firw this approximation after n
iterations. Using the reproducing property, we can show that the FW estimate is a quadrature rule:

pFW[f] <fa ,UFW <f7ZwFWgZ> Zwa<f7 YL ’H = waWf(le:W) (8)
i=1

The total computational cost for FW is O(n?). An extension known as FW with Line Search
(FWLS) uses a line-search method to find the optimal step size p; at each iteration (see Alg. [I)).
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Figure 1: Left: Approximations of the mean element 1, using the FWLS algorithm, based on n =
1,2,5,10, 50 design points (purple, blue, green, red and orange respectively). It is not possible to
distinguish between approximation and ground truth when n = 50. Right: Density of a mixture
of 20 Gaussian distributions, displaying the first n = 25 design points chosen by FW (red), FWLS
(orange) and SBQ (green). Each method provides well-spaced design points in high-density regions.
Most FW and FWLS design points overlap, partly explaining their similar performance in this case.

Once again, the approximation obtained by FWLS has a sparse expression as a convex combination
of all the previously visited states and we obtain an associated quadrature rule. FWLS has theoreti-
cal convergence rates that can be stronger than standard versions of FW but has computational cost
in O(n?). The authors in provide a survey of FW-based algorithms and their convergence rates
under different regularity conditions on the objective function and domain of optimisation.

Remark: The FW design points {zfW}?_, are generally not available in closed-form. We follow
mainstream literature by selecting, at each iteration, the point that minimises the MMD over a finite
collection of M points, drawn i.i.d from p(z). The authors in [18] proved that this approximation
adds a O(M~'/*) term to the MMD, so that theoretical results on FW convergence continue to
apply provided that M (n) — oo sufficiently quickly. Appendix A provides full details. In practice,

one may also make use of a numerical optimisation scheme in order to select the points.

3 A Hybrid Approach: Frank-Wolfe Bayesian Quadrature

To combine the advantages of a probabilistic integrator with a formal convergence theory, we pro-
pose Frank-Wolfe Bayesian Quadrature (FWBQ). In FWBQ, we first select design points {:cf w A
using the FW algorithm. However, when computing the quadrature approximation, instead of using
the usual FW weights {w!™}7_, we use instead the weights {w>?}?_, provided by BQ. We denote
this quadrature rule by prwgq and also consider prwisg, Which uses FWLS in place of FW. As
we show below, these hybrid estimators (i) carry the Bayesian interpretation of Sec. [2.2} (ii) per-
mit a rigorous theoretical analysis, and (iii) out-perform existing FW quadrature rules by orders of
magnitude in simulations. FWBQ is hence ideally suited to probabilistic numerics applications.

For these theoretical results we assume that f belongs to a finite-dimensional RKHS %, in line with
recent literature [2] [18]]. We further assume that X is a compact subset of R¢, that p(z) > 0
Va € X and that k is continuous on X’ x X. Under these hypotheses, Theorem|I]establishes consis-
tency of the posterior mean, while Theorem 2] establishes contraction for the posterior distribution.

Theorem 1 (Consistency). The posterior mean prweq[f] converges to the true integral p|f] at the
following rates:

2D? 1
. Canan T n for FWBQ
b1~ rwnolf]| < MMD (s, wi}) S{ VED exp(—fn) for FWLSBQ )

where the FWBQ uses step-size p; = 1/(i+1), D € (0, c0) is the diameter of the marginal polytope
M and R € (0, 00) gives the radius of the smallest ball of center 1, included in M.



Note that all the proofs of this paper can be found in Appendix B. An immediate corollary of The-
orem|l|is that FWLSBQ has an asymptotic error which is exponential in n and is therefore superior
to that of any QMC estimator [7]. This is not a contradiction - recall that QMC restricts attention to
uniform weights, while FWLSBAQ is able to propose arbitrary weightings. In addition we highlight a
robustness property: Even when the assumptions of this section do not hold, one still obtains atleast
arate Op(n~"'/2) for the posterior mean using either FWBQ or FWLSBQ [8].

Remark: The choice of kernel affects the convergence of the FWBQ method [15]]. Clearly, we expect
faster convergence if the function we are integrating is ‘close’ to the space of functions induced by
our kernel. Indeed, the kernel specifies the geometry of the marginal polytope M, that in turn
directly influences the rate constant R and D associated with FW convex optimisation.

Consistency is only a stepping stone towards our main contribution which establishes posterior con-
traction rates for FWBQ. Posterior contraction is important as these results justify, for the first time,
the probabilistic numerics approach to integration; that is, we show that the full posterior distribution
is a sensible quantification (at least asymptotically) of numerical error in the integration routine:

Theorem 2 (Contraction). Let S C R be an open neighbourhood of the true integral p[f] and let
~v = inf,.cge |1 —p[f]| > 0. Then the posterior probability mass on S¢ = R\ S vanishes at a rate:

2\/§D2 _ 2R2
R e
= 2

) (10)
3 e (= dhn — s o (den) for FWLSBO

where the FWBQ uses step-size p; = 1/(i+1), D € (0, 00) is the diameter of the marginal polytope
M and R € (0, 00) gives the radius of the smallest ball of center i, included in M.

The contraction rates are exponential for FWBQ and super-exponential for FWLBQ, and thus the
two algorithms enjoy both a probabilistic interpretation and rigorous theoretical guarantees. A no-
table corollary is that OBQ enjoys the same rates as FWLSBQ, resolving a conjecture by Tony
O’Hagan that OBQ converges exponentially [personal communication]:

Corollary. The consistency and contraction rates obtained for FWLSBQ apply also to OBQ.

4 Experimental Results

4.1 Simulation Study

To facilitate the experiments in this paper we followed [1}[2}[11}18]] and employed an exponentiated-
quadratic (EQ) kernel k(z,2') = A2 exp(—1/202||z — 2’||3). This corresponds to an infinite-
dimensional RKHS, not covered by our theory; nevertheless, we note that all simulations are
practically finite-dimensional due to rounding at machine precision. See Appendix E for a finite-
dimensional approximation using random Fourier features. EQ kernels are popular in the BQ lit-
erature as, when p is a mixture of Gaussians, the mean element i, is analytically tractable (see
Appendix C). Some other (p, k) pairs that produce analytic mean elements are discussed in [I]].

For this simulation study, we took p(z) to be a 20-component mixture of 2D-Gaussian distribu-
tions. Monte Carlo (MC) is often used for such distributions but has a slow convergence rate in
Op (nil/ 2). FW and FWLS are known to converge more quickly and are in this sense preferable to
MC [2]]. In our simulations (Fig. 2] left), both our novel methods FWBQ and FWLSBQ decreased
the MMD much faster than the FW/FWLS methods of [2]. Here, the same kernel hyper-parameters
(A, 0) = (1,0.8) were employed for all methods to have a fair comparison. This suggests that the
best quadrature rules correspond to elements outside the convex hull of {®(z;)}™ ,. Examples of
those, including BQ, often assign negative weights to features (Fig. S1 right, Appendix D).

The principle advantage of our proposed methods is that they reconcile theoretical tractability with
a fully probabilistic interpretation. For illustration, Fig. [2] (right) plots the posterior uncertainty due
to numerical error for a typical integration problem based on this p(z). In-depth empirical studies
of such posteriors exist already in the literature and the reader is referred to [3} 13} 22] for details.

Beyond these theoretically tractable integrators, SBQ seems to give even better performance as
n increases. An intuitive explanation is that SBQ picks {x;}? ; to minimise the MMD whereas
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Figure 2: Simulation study. Left: Plot of the worst-case integration error squared (MMD?). Both
FWBQ and FWLSBQ are seen to outperform FW and FWLS, with SBQ performing best overall.
Right: Integral estimates for FWLS and FWLSBQ for a function f € H. FWLS converges more
slowly and provides only a point estimate for a given number of design points. In contrast, FWLSBQ
converges faster and provides a full probability distribution over numerical error shown shaded in
orange (68% and 95% credible intervals). Ground truth corresponds to the dotted black line.

FWBQ and FWLSBQ only minimise an approximation of the MMD (its linearisation along D.J). In
addition, the SBQ weights are optimal at each iteration, which is not true for FWBQ and FWLSBQ.
We conjecture that Theorem [I] and [2] provide upper bounds on the rates of SBQ. This conjecture is
partly supported by Fig. [1|(right), which shows that SBQ selects similar design points to FW/FWLS
(but weights them optimally). Note also that both FWBQ and FWLSBQ give very similar result.
This is not surprising as FWLS has no guarantees over FW in infinite-dimensional RKHS [17].

4.2 Quantifying Numerical Error in a Proteomic Model Selection Problem

A topical bioinformatics application that extends recent work by [[19] is presented. The objective is
to select among a set of candidate models { M}, for protein regulation. This choice is based on a
dataset D of protein expression levels, in order to determine a ‘most plausible’ biological hypothesis
for further experimental investigation. Each M; is specified by a vector of kinetic parameters 6; (full
details in Appendix D). Bayesian model selection requires that these parameters are integrated out
against a prior p(6;) to obtain marginal likelihood terms L(M;) = [ p(D|6;)p(6;)dé;. Our focus
here is on obtaining the maximum a posteriori (MAP) model M;, defined as the maximiser of the
posterior model probability L(M;)/>"" | L(M;) (where we have assumed a uniform prior over
model space). Numerical error in the computation of each term L(M;), if unaccounted for, could
cause us to return a model M, that is different from the true MAP estimate M; and lead to the
mis-allocation of valuable experimental resources.

The problem is quickly exaggerated when the number m of models increases, as there are more
opportunities for one of the L(M;) terms to be ‘too large” due to numerical error. In [19]], the number
m of models was combinatorial in the number of protein kinases measured in a high-throughput
assay (currently ~ 102 but in principle up to ~ 10%). This led [19] to deploy substantial computing
resources to ensure that numerical error in each estimate of L(M;) was individually controlled.
Probabilistic numerics provides a more elegant and efficient solution: At any given stage, we have
a fully probabilistic quantification of our uncertainty in each of the integrals L(M;), shown to be
sensible both theoretically and empirically. This induces a full posterior distribution over numerical
uncertainty in the location of the MAP estimate (i.e. ‘Bayes all the way down’). As such we can
determine, on-line, the precise point in the computational pipeline when numerical uncertainty near
the MAP estimate becomes acceptably small, and cease further computation.

The FWBQ methodology was applied to one of the model selection tasks in [19]. In Fig. (3| (Ieft) we
display posterior model probabilities for each of m = 352 candidates models, where a low number
(n = 10) of samples were used for each integral. (For display clarity only the first 50 models
are shown.) In this low-n regime, numerical error introduces a second level of uncertainty that we
quantify by combining the FWBQ error models for all integrals in the computational pipeline; this is
summarised by a box plot (rather than a single point) for each of the models (obtained by sampling
- details in Appendix D). These box plots reveal that our estimated posterior model probabilities are
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Figure 3: Quantifying numerical error in a model selection problem. FWBQ was used to model
the numerical error of each integral L(M;) explicitly. For integration based on n = 10 design
points, FWBAQ tells us that the computational estimate of the model posterior will be dominated by
numerical error (left). When instead n = 100 design points are used (right), uncertainty due to
numerical error becomes much smaller (but not yet small enough to determine the MAP estimate).

completely dominated by numerical error. In contrast, when n is increased through 50, 100 and 200
(Fig. 3] right and Fig. S2), the uncertainty due to numerical error becomes negligible. At n = 200
we can conclude that model 26 is the true MAP estimate and further computations can be halted.
Correctness of this result was confirmed using the more computationally intensive methods in [19]].

In Appendix D we compared the relative performance of FWBQ, FWLSBQ and SBQ on this prob-
lem. Fig. S1 shows that the BQ weights reduced the MMD by orders of magnitude relative to FW
and FWLS and that SBQ converged more quickly than both FWBQ and FWLSBQ.

5 Conclusions

This paper provides the first theoretical results for probabilistic integration, in the form of pos-
terior contraction rates for FWBQ and FWLSBQ. This is an important step in the probabilistic
numerics research programme [15] as it establishes a theoretical justification for using the poste-
rior distribution as a model for the numerical integration error (which was previously assumed [e.g.
114 112} 120, 23] 25]]). The practical advantages conferred by a fully probabilistic error model were
demonstrated on a model selection problem from proteomics, where sensitivity of an evaluation of
the MAP estimate was modelled in terms of the error arising from repeated numerical integration.

The strengths and weaknesses of BQ (notably, including scalability in the dimension d of X) are
well-known and are inherited by our FWBQ methodology. We do not review these here but refer
the reader to [22] for an extended discussion. Convergence, in the classical sense, was proven here
to occur exponentially quickly for FWLSBQ, which partially explains the excellent performance
of BQ and related methods seen in applications [12} 23], as well as resolving an open conjecture.
As a bonus, the hybrid quadrature rules that we developed turned out to converge much faster in
simulations than those in [2], which originally motivated our work.

A key open problem for kernel methods in probabilistic numerics is to establish protocols for the
practical elicitation of kernel hyper-parameters. This is important as hyper-parameters directly affect
the scale of the posterior over numerical error that we ultimately aim to interpret. Note that this prob-
lem applies equally to BQ, as well as related quadrature methods [2} [11} 12} [20] and more generally
in probabilistic numerics [26]. Previous work, such as [13], optimised hyper-parameters on a per-
application basis. Our ongoing research seeks automatic and general methods for hyper-parameter
elicitation that provide good frequentist coverage properties for posterior credible intervals, but we
reserve the details for a future publication.
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