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Abstract

Super-resolution is the problem of recovering a superposition of point sources us-
ing bandlimited measurements, which may be corrupted with noise. This signal
processing problem arises in numerous imaging problems, ranging from astron-
omy to biology to spectroscopy, where it is common to take (coarse) Fourier mea-
surements of an object. Of particular interest is in obtaining estimation procedures
which are robust to noise, with the following desirable statistical and computa-
tional properties: we seek to use coarse Fourier measurements (bounded by some
cutoff frequency); we hope to take a (quantifiably) small number of measurements;
we desire our algorithm to run quickly.
Suppose we have k point sources in d dimensions, where the points are separated
by at least � from each other (in Euclidean distance). This work provides an
algorithm with the following favorable guarantees:
• The algorithm uses Fourier measurements, whose frequencies are bounded

by O(1/�) (up to log factors). Previous algorithms require a cutoff frequency
which may be as large as ⌦(

p
d/�).

• The number of measurements taken by and the computational complexity of
our algorithm are bounded by a polynomial in both the number of points k
and the dimension d, with no dependence on the separation �. In contrast,
previous algorithms depended inverse polynomially on the minimal separa-
tion and exponentially on the dimension for both of these quantities.

Our estimation procedure itself is simple: we take random bandlimited measure-
ments (as opposed to taking an exponential number of measurements on the hyper-
grid). Furthermore, our analysis and algorithm are elementary (based on concen-
tration bounds for sampling and the singular value decomposition).

1 Introduction

We follow the standard mathematical abstraction of this problem (Candes & Fernandez-Granda
[4, 3]): consider a d-dimensional signal x(t) modeled as a weighted sum of k Dirac measures in Rd:

x(t) =
k

X

j=1

w
j

�
µ

(j) , (1)

where the point sources, the µ(j)’s, are in Rd. Assume that the weights w
j

are complex valued,
whose absolute values are lower and upper bounded by some positive constant. Assume that we are
given k, the number of point sources1.

1An upper bound of the number of point sources suffices.
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Define the measurement function f(s) : Rd ! C to be the convolution of the point source x(t) with
a low-pass point spread function ei⇡<s,t> as below:

f(s) =

Z

t2Rd

ei⇡<t,s>x(dt) =
k

X

j=1

w
j

ei⇡<µ

(j)
,s>. (2)

In the noisy setting, the measurements are corrupted by uniformly bounded perturbation z:

ef(s) = f(s) + z(s), |z(s)|  ✏
z

, 8s. (3)

Suppose that we are only allowed to measure the signal x(t) by evaluating the measurement function
ef(s) at any s 2 Rd, and we want to recover the parameters of the point source signal, i.e., {w

j

, µ(j)

:

j 2 [k]}. We follow the standard normalization to assume that:

µ(j) 2 [�1,+1]

d, |w
j

| 2 [0, 1] 8j 2 [k].

Let w
min

= min

j

|w
j

| denote the minimal weight, and let � be the minimal separation of the point
sources defined as follows:

� = min

j 6=j

0
kµ(j) � µ(j

0
)k

2

, (4)

where we use the Euclidean distance between the point sources for ease of exposition2. These
quantities are key parameters in our algorithm and analysis. Intuitively, the recovery problem is
harder if the minimal separation � is small and the minimal weight w

min

is small.

The first question is that, given exact measurements, namely ✏
z

= 0, where and how many measure-
ments should we take so that the original signal x(t) can be exactly recovered.

Definition 1.1 (Exact recovery). In the exact case, i.e. ✏
z

= 0, we say that an algorithm achieves
exact recovery with m measurements of the signal x(t) if, upon input of these m measurements, the
algorithm returns the exact set of parameters {w

j

, µ(j)

: j 2 [k]}.

Moreover, we want the algorithm to be measurement noise tolerant, in the sense that in the presence
of measurement noise we can still recover good estimates of the point sources.

Definition 1.2 (Stable recovery). In the noisy case, i.e., ✏
z

� 0, we say that an algorithm achieves
stable recovery with m measurements of the signal x(t) if, upon input of these m measurements, the
algorithm returns estimates { bw

j

, bµ(j)

: j 2 [k]} such that

min

⇡

max

n

kbµ(j) � µ(⇡(j))k
2

: j 2 [k]
o

 poly(d, k)✏
z

,

where the min is over permutations ⇡ on [k] and poly(d,k) is a polynomial function in d and k.

By definition, if an algorithm achieves stable recovery with m measurements, it also achieves exact
recovery with these m measurements.

The terminology of “super-resolution” is appropriate due to the following remarkable result (in the
noiseless case) of Donoho [9]: suppose we want to accurately recover the point sources to an error
of �, where � ⌧ �. Naively, we may expect to require measurements whose frequency depends
inversely on the desired the accuracy �. Donoho [9] showed that it suffices to obtain a finite number
of measurements, whose frequencies are bounded by O(1/�), in order to achieve exact recovery;
thus resolving the point sources far more accurately than that which is naively implied by using
frequencies of O(1/�). Furthermore, the work of Candes & Fernandez-Granda [4, 3] showed that
stable recovery, in the univariate case (d = 1), is achievable with a cutoff frequency of O(1/�)

using a convex program and a number of measurements whose size is polynomial in the relevant
quantities.

2Our claims hold withut using the “wrap around metric”, as in [4, 3], due to our random sampling. Also, it
is possible to extend these results for the `p-norm case.
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d = 1 d � 1

cutoff freq measurements runtime cutoff freq measurements runtime

SDP 1

�

k log(k) log( 1

�

) poly( 1

�

, k) C

d

�1
(

1

�1
)

d poly(( 1

�1
)

d, k)

MP 1

�

1

�

(

1

�

)

3 - - -

Ours 1

�

(k log(k))2 (k log(k))2 log(kd)

�

(k log(k) + d)2 (k log(k) + d)2

Table 1: See Section 1.2 for description. See Lemma 2.3 for details about the cutoff frequency.
Here, we are implicitly using O(·) notation.

1.1 This work

We are interested in stable recovery procedures with the following desirable statistical and com-
putational properties: we seek to use coarse (low frequency) measurements; we hope to take a
(quantifiably) small number of measurements; we desire our algorithm run quickly. Informally, our
main result is as follows:

Theorem 1.3 (Informal statement of Theorem 2.2). For a fixed probability of error, the proposed
algorithm achieves stable recovery with a number of measurements and with computational runtime
that are both on the order of O((k log(k) + d)2). Furthermore, the algorithm makes measurements
which are bounded in frequency by O(1/�) (ignoring log factors).

Notably, our algorithm and analysis directly deal with the multivariate case, with the univariate case
as a special case. Importantly, the number of measurements and the computational runtime do not
depend on the minimal separation of the point sources. This may be important even in certain low
dimensional imaging applications where taking physical measurements are costly (indeed, super-
resolution is important in settings where � is small). Furthermore, our technical contribution of how
to decompose a certain tensor constructed with Fourier measurements may be of broader interest to
related questions in statistics, signal processing, and machine learning.

1.2 Comparison to related work

Table 1 summarizes the comparisons between our algorithm and the existing results. The multi-
dimensional cutoff frequency we refer to in the table is the maximal coordinate-wise entry of any
measurement frequency s (i.e. ksk1). “SDP” refers to the semidefinite programming (SDP) based
algorithms of Candes & Fernandez-Granda [3, 4]; in the univariate case, the number of measure-
ments can be reduced by the method in Tang et. al. [23] (this is reflected in the table). “MP” refers
to the matrix pencil type of methods, studied in [14] and [15] for the univariate case. Here, we are
defining the infinity norm separation as �1 = min

j 6=j

0 kµ(j)�µ(j

0
)k1, which is understood as the

wrap around distance on the unit circle. C
d

� 1 is a problem dependent constant (discussed below).

Observe the following differences between our algorithm and prior work:

1) Our minimal separation is measured under the `
2

-norm instead of the infinity norm, as in the
SDP based algorithm. Note that �1 depends on the coordinate system; in the worst case, it can
underestimate the separation by a 1/

p
d factor, namely �1 ⇠ �/

p
d.

2) The computation complexity and number of measurements are polynomial in dimension d and
the number of point sources k, and surprisingly do not depend on the minimal separation of the
point sources! Intuitively, when the minimal separation between the point sources is small, the
problem should be harder, this is only reflected in the sampling range and the cutoff frequency
of the measurements in our algorithm.

3) Furthermore, one could project the multivariate signal to the coordinates and solve multiple uni-
variate problems (such as in [19, 17], which provided only exact recovery results). Naive random
projections would lead to a cutoff frequency of O(

p
d/�).
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SDP approaches: The work in [3, 4, 10] formulates the recovery problem as a total-variation min-
imization problem; they then show the dual problem can be formulated as an SDP. They focused
on the analysis of d = 1 and only explicitly extend the proofs for d = 2. For d � 1, Ingham-type
theorems (see [20, 12]) suggest that C

d

= O(

p
d).

The number of measurements can be reduced by the method in [23] for the d = 1 case, which is
noted in the table. Their method uses sampling “off the grid”; technically, their sampling scheme is
actually sampling random points from the grid, though with far fewer measurements.

Matrix pencil approaches: The matrix pencil method, MUSIC and Prony’s method are essentially
the same underlying idea, executed in different ways. The original Prony’s method directly attempts
to find roots of a high degree polynomial, where the root stability has few guarantees. Other methods
aim to robustify the algorithm.

Recently, for the univariate matrix pencil method, Liao & Fannjiang [14] and Moitra [15] provide a
stability analysis of the MUSIC algorithm. Moitra [15] studied the optimal relationship between the
cutoff frequency and �, showing that if the cutoff frequency is less than 1/�, then stable recovery
is not possible with matrix pencil method (with high probability).

1.3 Notation

Let R, C, and Z to denote real, complex, and natural numbers. For d 2 Z, [d] denotes the set
[d] = {1, . . . , d}. For a set S , |S| denotes its cardinality. We use � to denote the direct sum of sets,
namely S

1

� S
2

= {(a+ b) : a 2 S
1

, b 2 S
2

}.

Let e
n

to denote the n-th standard basis vector in Rd, for n 2 [d]. Let Pd

R,2

= {x 2 Rd

: kxk
2

= 1}
to denote the d-sphere of radius R in the d-dimensional standard Euclidean space.

Denote the condition number of a matrix X 2 Rm⇥n as cond
2

(X) = �
max

(X)/�
min

(X), where
�
max

(X) and �
min

(X) are the maximal and minimal singular values of X .

We use ⌦ to denote tensor product. Given matrices A,B,C 2 Cm⇥k, the tensor product V =

A ⌦ B ⌦ C 2 Cm⇥m⇥m is equivalent to V
i1,i2,i3 =

P

k

n=1

A
i1,nBi2,nCi3,n. Another view of

tensor is that it defines a multi-linear mapping. For given dimension m
A

,m
B

,m
C

the mapping
V (·, ·, ·) : Cm⇥m

A ⇥ Cm⇥m

B ⇥ Cm⇥m

C ! Cm

A

⇥m

B

⇥m

C is defined as:

[V (X
A

, X
B

, X
c

)]

i1,i2,i3 =

X

j1,j2,j32[m]

V
j1,j2,j3 [XA

]

j1,i1 [XB

]

j2,i2 [XC

]

j3,i3 .

In particular, for a 2 Cm, we use V (I, I, a) to denote the projection of tensor V along the 3rd
dimension. Note that if the tensor admits a decomposition V = A⌦B ⌦ C, it is straightforward to
verify that

V (I, I, a) = ADiag(C>a)B>.

It is well-known that if the factors A,B,C have full column rank then the rank k decomposition
is unique up to re-scaling and common column permutation. Moreover, if the condition number
of the factors are upper bounded by a positive constant, then one can compute the unique tensor
decomposition V with stability guarantees (See [1] for a review. Lemma 2.5 herein provides an
explicit statement.).

2 Main Results

2.1 The algorithm

We briefly describe the steps of Algorithm 1 below:

(Take measurements) Given positive numbers m and R, randomly draw a sampling set S =

�

s(1), . . . s(m)

 

of m i.i.d. samples of the Gaussian distribution N (0, R2I
d⇥d

). Form the set
S 0

= S [ {s(m+1)

= e
1

, . . . , s(m+d)

= e
d

, s(m+d+1)

= 0} ⇢ Rd. Denote m0
= m + d + 1.

Take another independent random sample v from the unit sphere, and define v(1) = v, v(2) = 2v.
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Input: R, m, noisy measurement function ef(·).
Output: Estimates { bw

j

, bµ(j)

: j 2 [k]}.

1. Take measurements:
Let S = {s(1), . . . , s(m)} be m i.i.d. samples from the Gaussian distribution N (0, R2I

d⇥d

).
Set s(m+n)

= e
n

for all n 2 [d] and s(m+n+1)

= 0. Denote m0
= m+ d+ 1.

Take another random samples v from the unit sphere, and set v(1) = v and v(2) = 2v.
Construct a tensor eF 2 Cm

0⇥m

0⇥3: eF
n1,n2,n3 =

ef(s)
�

�

s=s

(n1)
+s

(n2)
+v

(n3) .

2. Tensor Decomposition: Set (bV
S

0 , bD
w

) = TensorDecomp( eF ).
For j = 1, . . . , k, set [bV

S

0
]

j

= [

bV
S

0
]

j

/[bV
S

0
]

m

0
,j

3. Read of estimates: For j = 1, . . . , k, set bµ(j)

= Real(log([bV
S

]

[m+1:m+d,j]

)/(i⇡)).

4. Set cW = argmin

W2Ck k bF � bV
S

0 ⌦ bV
S

0 ⌦ bV
d

D
w

k
F

.

Algorithm 1: General algorithm

Construct the 3rd order tensor eF 2 Cm

0⇥m

0⇥3 with noise corrupted measurements ef(s) evaluated
at the points in S 0 � S 0 � {v(1), v(2)}, arranged in the following way:

eF
n1,n2,n3 =

ef(s)
�

�

s=s

(n1)
+s

(n2)
+v

(n3) , 8n1

, n
2

2 [m0
], n

3

2 [2]. (5)

(Tensor decomposition) Define the characteristic matrix V
S

to be:

V
S

=

2

6

6

6

6

4

ei⇡<µ

(1)
,s

(1)
> . . . ei⇡<µ

(k)
,s

(1)
>

ei⇡<µ

(1)
,s

(2)
> . . . ei⇡<µ

(k)
,s

(2)
>

... . . .
...

ei⇡<µ

(1)
,s

(m)
> . . . ei⇡<µ

(k)
,s

(m)
>

3

7

7

7

7

5

. (6)

and define matrix V 0 2 Cm

0⇥k to be

V
S

0
=

"

V
S

V
d

1, . . . , 1

#

, (7)

where V
d

2 Cd⇥k is defined in (17). Define

V
2

=

2

4

ei⇡<µ

(1)
,v

(1)
> . . . ei⇡<µ

(k)
,v

(1)
>

ei⇡<µ

(1)
,v

(2)
> . . . ei⇡<µ

(k)
,v

(2)
>

1 . . . 1

3

5 .

Note that in the exact case (✏
z

= 0) the tensor F constructed in (5) admits a rank-k decomposition:

F = V
S

0 ⌦ V
S

0 ⌦ (V
2

D
w

), (8)

Assume that V
S

0 has full column rank, then this tensor decomposition is unique up to column
permutation and rescaling with very high probability over the randomness of the random unit vector
v. Since each element of V

S

0 has unit norm, and we know that the last row of V
S

0 and the last row
of V

2

are all ones, there exists a proper scaling so that we can uniquely recover w
j

’s and columns
of V

S

0 up to common permutation.
In this paper, we adopt Jennrich’s algorithm (see Algorithm 2) for tensor decomposition. Other
algorithms, for example tensor power method ([1]) and recursive projection ([24]), which are pos-
sibly more stable than Jennrich’s algorithm, can also be applied here.
(Read off estimates) Let log(V

d

) denote the element-wise logarithm of V
d

. The estimates of the
point sources are given by:

h

µ(1), µ(2), . . . , µ(k)

i

=

log(V
d

)

i⇡
.
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Input: Tensor eF 2 Cm⇥m⇥3, rank k.

output: Factor bV 2 Cm⇥k.

1. Compute the truncated SVD of eF (I, I, e
1

) =

bP b⇤ bP> with the k leading singular values.

2. Set bE =

eF (

bP , bP , I). Set bE
1

=

bE(I, I, e
1

) and bE
2

=

bE(I, I, e
2

).

3. Let the columns of bU be the eigenvectors of bE
1

bE�1

2

corresponding to the k eigenvalues
with the largest absolute value.

4. Set bV =

p
m bP bU .

Algorithm 2: TensorDecomp

Remark 2.1. In the toy example, the simple algorithm corresponds to using the sampling set S 0
=

{e
1

, . . . , e
d

}. The conventional univariate matrix pencil method corresponds to using the sampling
set S 0

= {0, 1, . . . ,m} and the set of measurements S 0 � S 0 � S 0 corresponds to the grid [m]

3.

2.2 Guarantees

In this section, we discuss how to pick the two parameters m and R and prove that the proposed
algorithm indeed achieves stable recovery in the presence of measurement noise.

Theorem 2.2 (Stable recovery). There exists a universal constant C such that the following holds.

Fix ✏
x

, �
s

, �
v

2 (0, 1

2

);

pick m such that m � max

n

k

✏

x

q

8 log

k

�

s

, d
o

;

for d = 1, pick R �
p

2 log(1+2/✏

x

)

⇡�

; for d � 2, pick R �
p

2 log(k/✏

x

)

⇡�

.

Assume the bounded measurement noise model as in (3) and that ✏
z

 ��

v

w

2
min

100

p
dk

5

⇣

1�2✏

x

1+2✏

x

⌘

2.5

.

With probability at least (1��
s

) over the random sampling of S , and with probability at least (1��
v

)

over the random projections in Algorithm 2, the proposed Algorithm 1 returns an estimation of the
point source signal bx(t) =

P

k

j=1

bw
j

b�
µ

(j) with accuracy:

min

⇡

max

n

kbµ(j) � µ(⇡(j))k
2

: j 2 [k]
o

 C

p
dk5

��
v

w
max

w2

min

✓

1 + 2✏
x

1� 2✏
x

◆

2.5

✏
z

,

where the min is over permutations ⇡ on [k]. Moreover, the proposed algorithm has time complexity
in the order of O((m0

)

3

).

The next lemma shows that essentially, with overwhelming probability, all the frequencies taken
concentrate within the hyper-cube with cutoff frequency R0 on each coordinate, where R0 is compa-
rable to R,

Lemma 2.3 (The cutoff frequency). For d > 1, with high probability, all of the 2(m0
)

2 sampling
frequencies in S 0�S 0�{v(1), v(2)} satisfy that ks(j1)+s(j2)+v(j3)k1  R0, 8j

1

, j
2

2 [m], j
3

2
[2], where the per-coordinate cutoff frequency is given by R0

= O(R
p
logmd).

For d = 1 case, the cutoff frequency R0 can be made to be in the order of R0
= O(1/�).

Remark 2.4 (Failure probability). Overall, the failure probability consists of two pieces: �
v

for
random projection of v, and �

s

for random sampling to ensure the bounded condition number of V
S

.
This may be boosed to arbitrarily high probability through repetition.
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2.3 Key Lemmas

Stability of tensor decomposition: In this paragraph, we give a brief description and the stability
guarantee of the well-known Jennrich’s algorithm ([11, 13]) for low rank 3rd order tensor decompo-
sition. We only state it for the symmetric tensors as appeared in the proposed algorithm.

Consider a tensor F = V ⌦ V ⌦ (V
2

D
w

) 2 Cm⇥m⇥3 where the factor V has full column rank k.
Then the decomposition is unique up to column permutation and rescaling, and Algorithm 2 finds the
factors efficiently. Moreover, the eigen-decomposition is stable if the factor V is well-conditioned
and the eigenvalues of F

a

F †
b

are well separated.
Lemma 2.5 (Stability of Jennrich’s algorithm). Consider the 3rd order tensor F = V ⌦ V ⌦
(V

2

D
w

) 2 Cm⇥m⇥3 of rank k  m, constructed as in Step 1 in Algorithm 1.

Given a tensor eF that is element-wise close to F , namely for all n
1

, n
2

, n
3

2 [m],
�

� eF
n1,n2,n3 �

F
n1,n2,n3

�

�  ✏
z

, and assume that the noise is small ✏
z

 ��

v

w

2
min

100

p
dkw

max

cond2(V )

5
. Use eF as the input

to Algorithm 2. With probability at least (1� �
v

) over the random projections v(1) and v(2), we can
bound the distance between columns of the output bV and that of V by:

min

⇡

max

j

n

kbV
j

� V
⇡(j)

k
2

: j 2 [k]
o

 C

p
dk2

��
v

w
max

w2

min

cond
2

(V )

5✏
z

, (9)

where C is a universal constant.

Condition number of V
S

0 : The following lemma is helpful:

Lemma 2.6. Let V
S

0 2 C(m+d+1)⇥k be the factor as defined in (7). Recall that V
S

0
= [V

S

;V
d

; 1],
where V

d

is defined in (17), and V
S

is the characteristic matrix defined in (6).

We can bound the condition number of V
S

0 by

cond
2

(V
S

0
) 

q

1 +

p
kcond

2

(V
S

). (10)

Condition number of the characteristic matrix V
S

: Therefore, the stability analysis of the pro-
posed algorithm boils down to understanding the relation between the random sampling set S and
the condition number of the characteristic matrix V

S

. This is analyzed in Lemma 2.8 (main technical
lemma).
Lemma 2.7. For any fixed number ✏

x

2 (0, 1/2). Consider a Gaussian vector s with distribution

N (0, R2I
d⇥d

), where R �
p

2 log(k/✏

x

)

⇡�

for d � 2, and R �
p

2 log(1+2/✏

x

)

⇡�

for d = 1. Define the
Hermitian random matrix X

s

2 Ck⇥k

herm

to be

X
s

=

2

6

6

6

6

4

e�i⇡<µ

(1)
,s>

e�i⇡<µ

(2)
,s>

...
e�i⇡<µ

(k)
,s>

3

7

7

7

7

5

h

ei⇡<µ

(1)
,s>, ei⇡<µ

(2)
,s>, . . . ei⇡<µ

(k)
,s>

i

. (11)

We can bound the spectrum of E
s

[X
s

] by:

(1� ✏
x

)I
k⇥k

� E
s

[X
s

] � (1 + ✏
x

)I
k⇥k

. (12)

Lemma 2.8 (Main technical lemma). In the same setting of Lemma 2.7, Let S = {s(1), . . . , s(m)}
be m independent samples of the Gaussian vector s. For m � k

✏

x

q

8 log

k

�

s

, with probability at
least 1� �

s

over the random sampling, the condition number of the factor V
S

is bounded by:

cond
2

(V
S

) 
r

1 + 2✏
x

1� 2✏
x

. (13)
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