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Abstract

Deep Neural Networks (DNN) have achieved state-of-the-art results in a wide
range of tasks, with the best results obtained with large training sets and large
models. In the past, GPUs enabled these breakthroughs because of their greater
computational speed. In the future, faster computation at both training and test
time is likely to be crucial for further progress and for consumer applications on
low-power devices. As a result, there is much interest in research and develop-
ment of dedicated hardware for Deep Learning (DL). Binary weights, i.e., weights
which are constrained to only two possible values (e.g. -1 or 1), would bring great
benefits to specialized DL hardware by replacing many multiply-accumulate op-
erations by simple accumulations, as multipliers are the most space and power-
hungry components of the digital implementation of neural networks. We in-
troduce BinaryConnect, a method which consists in training a DNN with binary
weights during the forward and backward propagations, while retaining precision
of the stored weights in which gradients are accumulated. Like other dropout
schemes, we show that BinaryConnect acts as regularizer and we obtain near
state-of-the-art results with BinaryConnect on the permutation-invariant MNIST,
CIFAR-10 and SVHN.

1 Introduction

Deep Neural Networks (DNN) have substantially pushed the state-of-the-art in a wide range of tasks,
especially in speech recognition [1, 2] and computer vision, notably object recognition from im-
ages [3, 4]. More recently, deep learning is making important strides in natural language processing,
especially statistical machine translation [5, 6, 7]. Interestingly, one of the key factors that enabled
this major progress has been the advent of Graphics Processing Units (GPUs), with speed-ups on the
order of 10 to 30-fold, starting with [8], and similar improvements with distributed training [9, 10].
Indeed, the ability to train larger models on more data has enabled the kind of breakthroughs ob-
served in the last few years. Today, researchers and developers designing new deep learning algo-
rithms and applications often find themselves limited by computational capability. This along, with
the drive to put deep learning systems on low-power devices (unlike GPUs) is greatly increasing the
interest in research and development of specialized hardware for deep networks [11, 12, 13].

Most of the computation performed during training and application of deep networks regards the
multiplication of a real-valued weight by a real-valued activation (in the recognition or forward
propagation phase of the back-propagation algorithm) or gradient (in the backward propagation
phase of the back-propagation algorithm). This paper proposes an approach called BinaryConnect
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to eliminate the need for these multiplications by forcing the weights used in these forward and
backward propagations to be binary, i.e. constrained to only two values (not necessarily 0 and 1). We
show that state-of-the-art results can be achieved with BinaryConnect on the permutation-invariant
MNIST, CIFAR-10 and SVHN.

What makes this workable are two ingredients:

1. Sufficient precision is necessary to accumulate and average a large number of stochastic
gradients, but noisy weights (and we can view discretization into a small number of values
as a form of noise, especially if we make this discretization stochastic) are quite compatible
with Stochastic Gradient Descent (SGD), the main type of optimization algorithm for deep
learning. SGD explores the space of parameters by making small and noisy steps and
that noise is averaged out by the stochastic gradient contributions accumulated in each
weight. Therefore, it is important to keep sufficient resolution for these accumulators,
which at first sight suggests that high precision is absolutely required. [14] and [15] show
that randomized or stochastic rounding can be used to provide unbiased discretization.
[14] have shown that SGD requires weights with a precision of at least 6 to 8 bits and
[16] successfully train DNNs with 12 bits dynamic fixed-point computation. Besides, the
estimated precision of the brain synapses varies between 6 and 12 bits [17].

2. Noisy weights actually provide a form of regularization which can help to generalize better,
as previously shown with variational weight noise [18], Dropout [19, 20] and DropCon-
nect [21], which add noise to the activations or to the weights. For instance, DropConnect
[21], which is closest to BinaryConnect, is a very efficient regularizer that randomly substi-
tutes half of the weights with zeros during propagations. What these previous works show
is that only the expected value of the weight needs to have high precision, and that noise
can actually be beneficial.

The main contributions of this article are the following.

• We introduce BinaryConnect, a method which consists in training a DNN with binary
weights during the forward and backward propagations (Section 2).
• We show that BinaryConnect is a regularizer and we obtain near state-of-the-art results on

the permutation-invariant MNIST, CIFAR-10 and SVHN (Section 3).
• We make the code for BinaryConnect available 1.

2 BinaryConnect

In this section we give a more detailed view of BinaryConnect, considering which two values to
choose, how to discretize, how to train and how to perform inference.

2.1 +1 or −1

Applying a DNN mainly consists in convolutions and matrix multiplications. The key arithmetic
operation of DL is thus the multiply-accumulate operation. Artificial neurons are basically multiply-
accumulators computing weighted sums of their inputs.

BinaryConnect constraints the weights to either +1 or −1 during propagations. As a result, many
multiply-accumulate operations are replaced by simple additions (and subtractions). This is a huge
gain, as fixed-point adders are much less expensive both in terms of area and energy than fixed-point
multiply-accumulators [22].

2.2 Deterministic vs stochastic binarization

The binarization operation transforms the real-valued weights into the two possible values. A very
straightforward binarization operation would be based on the sign function:

wb =
{

+1 if w ≥ 0,
−1 otherwise. (1)

1https://github.com/MatthieuCourbariaux/BinaryConnect
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Where wb is the binarized weight and w the real-valued weight. Although this is a deterministic op-
eration, averaging this discretization over the many input weights of a hidden unit could compensate
for the loss of information. An alternative that allows a finer and more correct averaging process to
take place is to binarize stochastically:

wb =
{

+1 with probability p = σ(w),
−1 with probability 1− p. (2)

where σ is the “hard sigmoid” function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1
2

)) (3)

We use such a hard sigmoid rather than the soft version because it is far less computationally expen-
sive (both in software and specialized hardware implementations) and yielded excellent results in our
experiments. It is similar to the “hard tanh” non-linearity introduced by [23]. It is also piece-wise
linear and corresponds to a bounded form of the rectifier [24].

2.3 Propagations vs updates

Let us consider the different steps of back-propagation with SGD udpates and whether it makes
sense, or not, to discretize the weights, at each of these steps.

1. Given the DNN input, compute the unit activations layer by layer, leading to the top layer
which is the output of the DNN, given its input. This step is referred as the forward propa-
gation.

2. Given the DNN target, compute the training objective’s gradient w.r.t. each layer’s acti-
vations, starting from the top layer and going down layer by layer until the first hidden
layer. This step is referred to as the backward propagation or backward phase of back-
propagation.

3. Compute the gradient w.r.t. each layer’s parameters and then update the parameters using
their computed gradients and their previous values. This step is referred to as the parameter
update.

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the func-
tions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.
Require: a minibatch of (inputs, targets), previous parameters wt−1 (weights) and bt−1 (biases),

and learning rate η.
Ensure: updated parameters wt and bt.

1. Forward propagation:
wb ← binarize(wt−1)
For k = 1 to L, compute ak knowing ak−1, wb and bt−1

2. Backward propagation:
Initialize output layer’s activations gradient ∂C

∂aL

For k = L to 2, compute ∂C
∂ak−1

knowing ∂C
∂ak

and wb

3. Parameter update:
Compute ∂C

∂wb
and ∂C

dbt−1
knowing ∂C

∂ak
and ak−1

wt ← clip(wt−1 − η ∂C
∂wb

)
bt ← bt−1 − η ∂C

∂bt−1

A key point to understand with BinaryConnect is that we only binarize the weights during the for-
ward and backward propagations (steps 1 and 2) but not during the parameter update (step 3), as
illustrated in Algorithm 1. Keeping good precision weights during the updates is necessary for SGD
to work at all. These parameter changes are tiny by virtue of being obtained by gradient descent, i.e.,
SGD performs a large number of almost infinitesimal changes in the direction that most improves
the training objective (plus noise). One way to picture all this is to hypothesize that what matters
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most at the end of training is the sign of the weights, w∗, but that in order to figure it out, we perform
a lot of small changes to a continuous-valued quantity w, and only at the end consider its sign:

w∗ = sign(
∑

t

gt) (4)

where gt is a noisy estimator of ∂C(f(xt,wt−1,bt−1),yt)
∂wt−1

, where C(f(xt, wt−1, bt−1), yt) is the value
of the objective function on (input,target) example (xt, yt), when wt−1 are the previous weights and
w∗ is its final discretized value of the weights.

Another way to conceive of this discretization is as a form of corruption, and hence as a regularizer,
and our empirical results confirm this hypothesis. In addition, we can make the discretization errors
on different weights approximately cancel each other while keeping a lot of precision by randomizing
the discretization appropriately. We propose a form of randomized discretization that preserves the
expected value of the discretized weight.

Hence, at training time, BinaryConnect randomly picks one of two values for each weight, for each
minibatch, for both the forward and backward propagation phases of backprop. However, the SGD
update is accumulated in a real-valued variable storing the parameter.

An interesting analogy to understand BinaryConnect is the DropConnect algorithm [21]. Just like
BinaryConnect, DropConnect only injects noise to the weights during the propagations. Whereas
DropConnect’s noise is added Gaussian noise, BinaryConnect’s noise is a binary sampling process.
In both cases the corrupted value has as expected value the clean original value.

2.4 Clipping

Since the binarization operation is not influenced by variations of the real-valued weights w when its
magnitude is beyond the binary values±1, and since it is a common practice to bound weights (usu-
ally the weight vector) in order to regularize them, we have chosen to clip the real-valued weights
within the [−1, 1] interval right after the weight updates, as per Algorithm 1. The real-valued weights
would otherwise grow very large without any impact on the binary weights.

2.5 A few more tricks

Optimization No learning rate scaling Learning rate scaling

SGD 11.45%
Nesterov momentum 15.65% 11.30%
ADAM 12.81% 10.47%

Table 1: Test error rates of a (small) CNN trained on CIFAR-10 depending on optimization method
and on whether the learning rate is scaled with the weights initialization coefficients from [25].

We use Batch Normalization (BN) [26] in all of our experiments, not only because it accelerates
the training by reducing internal covariate shift, but also because it reduces the overall impact of
the weights scale. Moreover, we use the ADAM learning rule [27] in all of our CNN experiments.
Last but not least, we scale the weights learning rates respectively with the weights initialization
coefficients from [25] when optimizing with ADAM, and with the squares of those coefficients
when optimizing with SGD or Nesterov momentum [28]. Table 1 illustrates the effectiveness of
those tricks.

2.6 Test-Time Inference

Up to now we have introduced different ways of training a DNN with on-the-fly weight binarization.
What are reasonable ways of using such a trained network, i.e., performing test-time inference on
new examples? We have considered three reasonable alternatives:

1. Use the resulting binary weights wb (this makes most sense with the deterministic form of
BinaryConnect).
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2. Use the real-valued weights w, i.e., the binarization only helps to achieve faster training but
not faster test-time performance.

3. In the stochastic case, many different networks can be sampled by sampling a wb for each
weight according to Eq. 2. The ensemble output of these networks can then be obtained by
averaging the outputs from individual networks.

We use the first method with the deterministic form of BinaryConnect. As for the stochastic form
of BinaryConnect, we focused on the training advantage and used the second method in the experi-
ments, i.e., test-time inference using the real-valued weights. This follows the practice of Dropout
methods, where at test-time the “noise” is removed.

Method MNIST CIFAR-10 SVHN

No regularizer 1.30 ± 0.04% 10.64% 2.44%
BinaryConnect (det.) 1.29 ± 0.08% 9.90% 2.30%
BinaryConnect (stoch.) 1.18 ± 0.04% 8.27% 2.15%
50% Dropout 1.01 ± 0.04%

Maxout Networks [29] 0.94% 11.68% 2.47%
Deep L2-SVM [30] 0.87%
Network in Network [31] 10.41% 2.35%
DropConnect [21] 1.94%
Deeply-Supervised Nets [32] 9.78% 1.92%

Table 2: Test error rates of DNNs trained on the MNIST (no convolution and no unsupervised
pretraining), CIFAR-10 (no data augmentation) and SVHN, depending on the method. We see
that in spite of using only a single bit per weight during propagation, performance is not worse
than ordinary (no regularizer) DNNs, it is actually better, especially with the stochastic version,
suggesting that BinaryConnect acts as a regularizer.

Figure 1: Features of the first layer of an MLP trained on MNIST depending on the regular-
izer. From left to right: no regularizer, deterministic BinaryConnect, stochastic BinaryConnect
and Dropout.

3 Benchmark results

In this section, we show that BinaryConnect acts as regularizer and we obtain near state-of-the-art
results with BinaryConnect on the permutation-invariant MNIST, CIFAR-10 and SVHN.

3.1 Permutation-invariant MNIST

MNIST is a benchmark image classification dataset [33]. It consists in a training set of 60000 and
a test set of 10000 28 × 28 gray-scale images representing digits ranging from 0 to 9. Permutation-
invariance means that the model must be unaware of the image (2-D) structure of the data (in other
words, CNNs are forbidden). Besides, we do not use any data-augmentation, preprocessing or un-
supervised pretraining. The MLP we train on MNIST consists in 3 hidden layers of 1024 Rectifier
Linear Units (ReLU) [34, 24, 3] and a L2-SVM output layer (L2-SVM has been shown to perform
better than Softmax on several classification benchmarks [30, 32]). The square hinge loss is mini-
mized with SGD without momentum. We use an exponentially decaying learning rate. We use Batch
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Figure 2: Histogram of the weights of the first layer of an MLP trained on MNIST depending on
the regularizer. In both cases, it seems that the weights are trying to become deterministic to reduce
the training error. It also seems that some of the weights of deterministic BinaryConnect are stuck
around 0, hesitating between −1 and 1.

Figure 3: Training curves of a CNN on CIFAR-10 depending on the regularizer. The dotted lines
represent the training costs (square hinge losses) and the continuous lines the corresponding valida-
tion error rates. Both versions of BinaryConnect significantly augment the training cost, slow down
the training and lower the validation error rate, which is what we would expect from a Dropout
scheme.

Normalization with a minibatch of size 200 to speed up the training. As typically done, we use the
last 10000 samples of the training set as a validation set for early stopping and model selection. We
report the test error rate associated with the best validation error rate after 1000 epochs (we do not
retrain on the validation set). We repeat each experiment 6 times with different initializations. The
results are in Table 2. They suggest that the stochastic version of BinaryConnect can be considered
a regularizer, although a slightly less powerful one than Dropout, in this context.

3.2 CIFAR-10

CIFAR-10 is a benchmark image classification dataset. It consists in a training set of 50000 and
a test set of 10000 32 × 32 color images representing airplanes, automobiles, birds, cats, deers,
dogs, frogs, horses, ships and trucks. We preprocess the data using global contrast normalization
and ZCA whitening. We do not use any data-augmentation (which can really be a game changer for
this dataset [35]). The architecture of our CNN is:

(2×128C3)−MP2−(2×256C3)−MP2−(2×512C3)−MP2−(2×1024FC)−10SVM (5)

Where C3 is a 3 × 3 ReLU convolution layer, MP2 is a 2 × 2 max-pooling layer, FC a fully
connected layer, and SVM a L2-SVM output layer. This architecture is greatly inspired from VGG
[36]. The square hinge loss is minimized with ADAM. We use an exponentially decaying learning
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rate. We use Batch Normalization with a minibatch of size 50 to speed up the training. We use the
last 5000 samples of the training set as a validation set. We report the test error rate associated with
the best validation error rate after 500 training epochs (we do not retrain on the validation set). The
results are in Table 2 and Figure 3.

3.3 SVHN

SVHN is a benchmark image classification dataset. It consists in a training set of 604K and a test set
of 26K 32× 32 color images representing digits ranging from 0 to 9. We follow the same procedure
that we used for CIFAR-10, with a few notable exceptions: we use half the number of hidden units
and we train for 200 epochs instead of 500 (because SVHN is quite a big dataset). The results are in
Table 2.

4 Related works

Training DNNs with binary weights has been the subject of very recent works [37, 38, 39, 40]. Even
though we share the same objective, our approaches are quite different. [37, 38] do not train their
DNN with Backpropagation (BP) but with a variant called Expectation Backpropagation (EBP).
EBP is based on Expectation Propagation (EP) [41], which is a variational Bayes method used to do
inference in probabilistic graphical models. Let us compare their method to ours:

• It optimizes the weights posterior distribution (which is not binary). In this regard, our
method is quite similar as we keep a real-valued version of the weights.

• It binarizes both the neurons outputs and weights, which is more hardware friendly than
just binarizing the weights.

• It yields a good classification accuracy for fully connected networks (on MNIST) but not
(yet) for ConvNets.

[39, 40] retrain neural networks with ternary weights during forward and backward propagations,
i.e.:

• They train a neural network with high-precision,

• After training, they ternarize the weights to three possible values−H , 0 and +H and adjust
H to minimize the output error,

• And eventually, they retrain with ternary weights during propagations and high-precision
weights during updates.

By comparison, we train all the way with binary weights during propagations, i.e., our training pro-
cedure could be implemented with efficient specialized hardware avoiding the forward and backward
propagations multiplications, which amounts to about 2/3 of the multiplications (cf. Algorithm 1).

5 Conclusion and future works

We have introduced a novel binarization scheme for weights during forward and backward propaga-
tions called BinaryConnect. We have shown that it is possible to train DNNs with BinaryConnect on
the permutation invariant MNIST, CIFAR-10 and SVHN datasets and achieve nearly state-of-the-art
results. The impact of such a method on specialized hardware implementations of deep networks
could be major, by removing the need for about 2/3 of the multiplications, and thus potentially al-
lowing to speed-up by a factor of 3 at training time. With the deterministic version of BinaryConnect
the impact at test time could be even more important, getting rid of the multiplications altogether
and reducing by a factor of at least 16 (from 16 bits single-float precision to single bit precision)
the memory requirement of deep networks, which has an impact on the memory to computation
bandwidth and on the size of the models that can be run. Future works should extend those results to
other models and datasets, and explore getting rid of the multiplications altogether during training,
by removing their need from the weight update computation.
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