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Abstract

This work aims to address the problem of image-based question-answering (QA)
with new models and datasets. In our work, we propose to use neural networks
and visual semantic embeddings, without intermediate stages such as object de-
tection and image segmentation, to predict answers to simple questions about im-
ages. Our model performs 1.8 times better than the only published results on an
existing image QA dataset. We also present a question generation algorithm that
converts image descriptions, which are widely available, into QA form. We used
this algorithm to produce an order-of-magnitude larger dataset, with more evenly
distributed answers. A suite of baseline results on this new dataset are also pre-
sented.

1 Introduction

Combining image understanding and natural language interaction is one of the grand dreams of
artificial intelligence. We are interested in the problem of jointly learning image and text through a
question-answering task. Recently, researchers studying image caption generation [1, 2, 3, 4, 5, 6,
7, 8, 9, 10] have developed powerful methods of jointly learning from image and text inputs to form
higher level representations from models such as convolutional neural networks (CNNs) trained on
object recognition, and word embeddings trained on large scale text corpora. Image QA involves
an extra layer of interaction between human and computers. Here the model needs to pay attention
to details of the image instead of describing it in a vague sense. The problem also combines many
computer vision sub-problems such as image labeling and object detection.

In this paper we present our contributions to the problem: a generic end-to-end QA model using
visual semantic embeddings to connect a CNN and a recurrent neural net (RNN), as well as compar-
isons to a suite of other models; an automatic question generation algorithm that converts description
sentences into questions; and a new QA dataset (COCO-QA) that was generated using the algorithm,
and a number of baseline results on this new dataset.

In this work we assume that the answers consist of only a single word, which allows us to treat the
problem as a classification problem. This also makes the evaluation of the models easier and more
robust, avoiding the thorny evaluation issues that plague multi-word generation problems.

2 Related Work

Malinowski and Fritz [11] released a dataset with images and question-answer pairs, the DAtaset
for QUestion Answering on Real-world images (DAQUAR). All images are from the NYU depth v2
dataset [12], and are taken from indoor scenes. Human segmentation, image depth values, and object
labeling are available in the dataset. The QA data has two sets of configurations, which differ by the
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DAQUAR 1553
What is there in front of the
sofa?
Ground truth: table
IMG+BOW: table (0.74)
2-VIS+BLSTM: table (0.88)
LSTM: chair (0.47)

COCOQA 5078
How many leftover donuts is
the red bicycle holding?
Ground truth: three
IMG+BOW: two (0.51)
2-VIS+BLSTM: three (0.27)
BOW: one (0.29)

COCOQA 1238
What is the color of the tee-
shirt?
Ground truth: blue
IMG+BOW: blue (0.31)
2-VIS+BLSTM: orange (0.43)
BOW: green (0.38)

COCOQA 26088
Where is the gray cat sitting?
Ground truth: window
IMG+BOW: window (0.78)
2-VIS+BLSTM: window (0.68)
BOW: suitcase (0.31)

Figure 1: Sample questions and responses of a variety of models. Correct answers are in green and
incorrect in red. The numbers in parentheses are the probabilities assigned to the top-ranked answer
by the given model. The leftmost example is from the DAQUAR dataset, and the others are from
our new COCO-QA dataset.

number of object classes appearing in the questions (37-class and 894-class). There are mainly three
types of questions in this dataset: object type, object color, and number of objects. Some questions
are easy but many questions are very hard to answer even for humans. Since DAQUAR is the only
publicly available image-based QA dataset, it is one of our benchmarks to evaluate our models.

Together with the release of the DAQUAR dataset, Malinowski and Fritz presented an approach
which combines semantic parsing and image segmentation. Their approach is notable as one of the
first attempts at image QA, but it has a number of limitations. First, a human-defined possible set
of predicates are very dataset-specific. To obtain the predicates, their algorithm also depends on the
accuracy of the image segmentation algorithm and image depth information. Second, their model
needs to compute all possible spatial relations in the training images. Even though the model limits
this to the nearest neighbors of the test images, it could still be an expensive operation in larger
datasets. Lastly the accuracy of their model is not very strong. We show below that some simple
baselines perform better.

Very recently there has been a number of parallel efforts on both creating datasets and proposing
new models [13, 14, 15, 16]. Both Antol et al. [13] and Gao et al. [15] used MS-COCO [17] images
and created an open domain dataset with human generated questions and answers. In Anto et al.’s
work, the authors also included cartoon pictures besides real images. Some questions require logical
reasoning in order to answer correctly. Both Malinowski et al. [14] and Gao et al. [15] use recurrent
networks to encode the sentence and output the answer. Whereas Malinowski et al. use a single
network to handle both encoding and decoding, Gao et al. used two networks, a separate encoder
and decoder. Lastly, bilingual (Chinese and English) versions of the QA dataset are available in Gao
et al.’s work. Ma et al. [16] use CNNs to both extract image features and sentence features, and fuse
the features together with another multi-modal CNN.

Our approach is developed independently from the work above. Similar to the work of Malinowski
et al. and Gao et al., we also experimented with recurrent networks to consume the sequential
question input. Unlike Gao et al., we formulate the task as a classification problem, as there is no
single well- accepted metric to evaluate sentence-form answer accuracy [18]. Thus, we place more
focus on a limited domain of questions that can be answered with one word. We also formulate and
evaluate a range of other algorithms, that utilize various representations drawn from the question
and image, on these datasets.

3 Proposed Methodology

The methodology presented here is two-fold. On the model side we develop and apply various forms
of neural networks and visual-semantic embeddings on this task, and on the dataset side we propose
new ways of synthesizing QA pairs from currently available image description datasets.
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Figure 2: VIS+LSTM Model

3.1 Models

In recent years, recurrent neural networks (RNNs) have enjoyed some successes in the field of nat-
ural language processing (NLP). Long short-term memory (LSTM) [19] is a form of RNN which
is easier to train than standard RNNs because of its linear error propagation and multiplicative gat-
ings. Our model builds directly on top of the LSTM sentence model and is called the “VIS+LSTM”
model. It treats the image as one word of the question. We borrowed this idea of treating the image
as a word from caption generation work done by Vinyals et al. [1]. We compare this newly proposed
model with a suite of simpler models in the Experimental Results section.

1. We use the last hidden layer of the 19-layer Oxford VGG Conv Net [20] trained on Ima-
geNet 2014 Challenge [21] as our visual embeddings. The CNN part of our model is kept
frozen during training.

2. We experimented with several different word embedding models: randomly initialized em-
bedding, dataset-specific skip-gram embedding and general-purpose skip-gram embedding
model [22]. The word embeddings are trained with the rest of the model.

3. We then treat the image as if it is the first word of the sentence. Similar to DeViSE [23],
we use a linear or affine transformation to map 4096 dimension image feature vectors to a
300 or 500 dimensional vector that matches the dimension of the word embeddings.

4. We can optionally treat the image as the last word of the question as well through a different
weight matrix and optionally add a reverse LSTM, which gets the same content but operates
in a backward sequential fashion.

5. The LSTM(s) outputs are fed into a softmax layer at the last timestep to generate answers.

3.2 Question-Answer Generation

The currently available DAQUAR dataset contains approximately 1500 images and 7000 questions
on 37 common object classes, which might be not enough for training large complex models. An-
other problem with the current dataset is that simply guessing the modes can yield very good accu-
racy.

We aim to create another dataset, to produce a much larger number of QA pairs and a more even
distribution of answers. While collecting human generated QA pairs is one possible approach, and
another is to synthesize questions based on image labeling, we instead propose to automatically
convert descriptions into QA form. In general, objects mentioned in image descriptions are easier to
detect than the ones in DAQUAR’s human generated questions, and than the ones in synthetic QAs
based on ground truth labeling. This allows the model to rely more on rough image understanding
without any logical reasoning. Lastly the conversion process preserves the language variability in
the original description, and results in more human-like questions than questions generated from
image labeling.

As a starting point we used the MS-COCO dataset [17], but the same method can be applied to any
other image description dataset, such as Flickr [24], SBU [25], or even the internet.
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3.2.1 Pre-Processing & Common Strategies

We used the Stanford parser [26] to obtain the syntatic structure of the original image description.
We also utilized these strategies for forming the questions.

1. Compound sentences to simple sentences
Here we only consider a simple case, where two sentences are joined together with a conjunctive
word. We split the orginial sentences into two independent sentences.

2. Indefinite determiners “a(n)” to definite determiners “the”.
3. Wh-movement constraints

In English, questions tend to start with interrogative words such as “what”. The algorithm needs
to move the verb as well as the “wh-” constituent to the front of the sentence. For example:
“A man is riding a horse” becomes “What is the man riding?” In this work we consider the
following two simple constraints: (1) A-over-A principle which restricts the movement of a wh-
word inside a noun phrase (NP) [27]; (2) Our algorithm does not move any wh-word that is
contained in a clause constituent.

3.2.2 Question Generation

Question generation is still an open-ended topic. Overall, we adopt a conservative approach to
generating questions in an attempt to create high-quality questions. We consider generating four
types of questions below:

1. Object Questions: First, we consider asking about an object using “what”. This involves replac-
ing the actual object with a “what” in the sentence, and then transforming the sentence structure
so that the “what” appears in the front of the sentence. The entire algorithm has the follow-
ing stages: (1) Split long sentences into simple sentences; (2) Change indefinite determiners
to definite determiners; (3) Traverse the sentence and identify potential answers and replace
with “what”. During the traversal of object-type question generation, we currently ignore all the
prepositional phrase (PP) constituents; (4) Perform wh-movement. In order to identify a possible
answer word, we used WordNet [28] and the NLTK software package [29] to get noun categories.

2. Number Questions: We follow a similar procedure as the previous algorithm, except for a dif-
ferent way to identify potential answers: we extract numbers from original sentences. Splitting
compound sentences, changing determiners, and wh-movement parts remain the same.

3. Color Questions: Color questions are much easier to generate. This only requires locating the
color adjective and the noun to which the adjective attaches. Then it simply forms a sentence
“What is the color of the [object]” with the “object” replaced by the actual noun.

4. Location Questions: These are similar to generating object questions, except that now the answer
traversal will only search within PP constituents that start with the preposition “in”. We also
added rules to filter out clothing so that the answers will mostly be places, scenes, or large objects
that contain smaller objects.

3.2.3 Post-Processing

We rejected the answers that appear too rarely or too often in our generated dataset. After this QA
rejection process, the frequency of the most common answer words was reduced from 24.98% down
to 7.30% in the test set of COCO-QA.

4 Experimental Results

4.1 Datasets

Table 1 summarizes the statistics of COCO-QA. It should be noted that since we applied the QA
pair rejection process, mode-guessing performs very poorly on COCO-QA. However, COCO-QA
questions are actually easier to answer than DAQUAR from a human point of view. This encour-
ages the model to exploit salient object relations instead of exhaustively searching all possible re-
lations. COCO-QA dataset can be downloaded at http://www.cs.toronto.edu/˜mren/
imageqa/data/cocoqa
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Table 1: COCO-QA question type break-down

CATEGORY TRAIN % TEST %
OBJECT 54992 69.84% 27206 69.85%
NUMBER 5885 7.47% 2755 7.07%
COLOR 13059 16.59% 6509 16.71%

LOCATION 4800 6.10% 2478 6.36%
TOTAL 78736 100.00% 38948 100.00%

Here we provide some brief statistics of the new dataset. The maximum question length is 55, and
average is 9.65. The most common answers are “two” (3116, 2.65%), “white” (2851, 2.42%), and
“red” (2443, 2.08%). The least common are “eagle” (25, 0.02%) “tram” (25, 0.02%), and “sofa”
(25, 0.02%). The median answer is “bed” (867, 0.737%). Across the entire test set (38,948 QAs),
9072 (23.29%) overlap in training questions, and 7284 (18.70%) overlap in training question-answer
pairs.

4.2 Model Details

1. VIS+LSTM: The first model is the CNN and LSTM with a dimensionality-reduction weight
matrix in the middle; we call this “VIS+LSTM” in our tables and figures.

2. 2-VIS+BLSTM: The second model has two image feature inputs, at the start and the end of the
sentence, with different learned linear transformations, and also has LSTMs going in both the
forward and backward directions. Both LSTMs output to the softmax layer at the last timestep.
We call the second model “2-VIS+BLSTM”.

3. IMG+BOW: This simple model performs multinomial logistic regression based on the image
features without dimensionality reduction (4096 dimension), and a bag-of-word (BOW) vector
obtained by summing all the learned word vectors of the question.

4. FULL: Lastly, the “FULL” model is a simple average of the three models above.

We release the complete details of the models at https://github.com/renmengye/
imageqa-public.

4.3 Baselines

To evaluate the effectiveness of our models, we designed a few baselines.

1. GUESS: One very simple baseline is to predict the mode based on the question type. For ex-
ample, if the question contains “how many” then the model will output “two.” In DAQUAR, the
modes are “table”, “two”, and “white” and in COCO-QA, the modes are “cat”, “two”, “white”,
and “room”.

2. BOW: We designed a set of “blind” models which are given only the questions without the
images. One of the simplest blind models performs logistic regression on the BOW vector to
classify answers.

3. LSTM: Another “blind” model we experimented with simply inputs the question words into the
LSTM alone.

4. IMG: We also trained a counterpart “deaf” model. For each type of question, we train a separate
CNN classification layer (with all lower layers frozen during training). Note that this model
knows the type of question, in order to make its performance somewhat comparable to models
that can take into account the words to narrow down the answer space. However the model does
not know anything about the question except the type.

5. IMG+PRIOR: This baseline combines the prior knowledge of an object and the image under-
standing from the “deaf model”. For example, a question asking the color of a white bird flying
in the blue sky may output white rather than blue simply because the prior probability of the bird
being blue is lower. We denote c as the color, o as the class of the object of interest, and x as the
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image. Assuming o and x are conditionally independent given the color,

p(c|o, x) = p(c, o|x)∑
c∈C p(c, o|x)

=
p(o|c, x)p(c|x)∑
c∈C p(o|c, x)p(c|x)

=
p(o|c)p(c|x)∑
c∈C p(o|c)p(c|x)

(1)

This can be computed if p(c|x) is the output of a logistic regression given the CNN features alone,
and we simply estimate p(o|c) empirically: p̂(o|c) = count(o,c)

count(c) . We use Laplace smoothing on
this empirical distribution.

6. K-NN: In the task of image caption generation, Devlin et al. [30] showed that a nearest neighbors
baseline approach actually performs very well. To see whether our model memorizes the training
data for answering new question, we include a K-NN baseline in the results. Unlike image
caption generation, here the similarity measure includes both image and text. We use the bag-of-
words representation learned from IMG+BOW, and append it to the CNN image features. We use
Euclidean distance as the similarity metric; it is possible to improve the nearest neighbor result
by learning a similarity metric.

4.4 Performance Metrics

To evaluate model performance, we used the plain answer accuracy as well as the Wu-Palmer simi-
larity (WUPS) measure [31, 32]. The WUPS calculates the similarity between two words based on
their longest common subsequence in the taxonomy tree. If the similarity between two words is less
than a threshold then a score of zero will be given to the candidate answer. Following Malinowski
and Fritz [32], we measure all models in terms of accuracy, WUPS 0.9, and WUPS 0.0.

4.5 Results and Analysis

Table 2 summarizes the learning results on DAQUAR and COCO-QA. For DAQUAR we compare
our results with [32] and [14]. It should be noted that our DAQUAR results are for the portion of the
dataset (98.3%) with single-word answers. After the release of our paper, Ma et al. [16] claimed to
achieve better results on both datasets.

Table 2: DAQUAR and COCO-QA results

DAQUAR COCO-QA
ACC. WUPS 0.9 WUPS 0.0 ACC. WUPS 0.9 WUPS 0.0

MULTI-WORLD [32] 0.1273 0.1810 0.5147 - - -
GUESS 0.1824 0.2965 0.7759 0.0730 0.1837 0.7413
BOW 0.3267 0.4319 0.8130 0.3752 0.4854 0.8278
LSTM 0.3273 0.4350 0.8162 0.3676 0.4758 0.8234
IMG - - - 0.4302 0.5864 0.8585

IMG+PRIOR - - - 0.4466 0.6020 0.8624
K-NN (K=31, 13) 0.3185 0.4242 0.8063 0.4496 0.5698 0.8557

IMG+BOW 0.3417 0.4499 0.8148 0.5592 0.6678 0.8899
VIS+LSTM 0.3441 0.4605 0.8223 0.5331 0.6391 0.8825

ASK-NEURON [14] 0.3468 0.4076 0.7954 - - -
2-VIS+BLSTM 0.3578 0.4683 0.8215 0.5509 0.6534 0.8864

FULL 0.3694 0.4815 0.8268 0.5784 0.6790 0.8952
HUMAN 0.6027 0.6104 0.7896 - - -

From the above results we observe that our model outperforms the baselines and the existing ap-
proach in terms of answer accuracy and WUPS. Our VIS+LSTM and Malinkowski et al.’s recurrent
neural network model [14] achieved somewhat similar performance on DAQUAR. A simple average
of all three models further boosts the performance by 1-2%, outperforming other models.

It is surprising to see that the IMG+BOW model is very strong on both datasets. One limitation of
our VIS+LSTM model is that we are not able to consume image features as large as 4096 dimensions
at one time step, so the dimensionality reduction may lose some useful information. We tried to give
IMG+BOW a 500 dim. image vector, and it does worse than VIS+LSTM (≈48%).
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Table 3: COCO-QA accuracy per category

OBJECT NUMBER COLOR LOCATION
GUESS 0.0239 0.3606 0.1457 0.0908
BOW 0.3727 0.4356 0.3475 0.4084
LSTM 0.3587 0.4534 0.3626 0.3842
IMG 0.4073 0.2926 0.4268 0.4419

IMG+PRIOR - 0.3739 0.4899 0.4451
K-NN 0.4799 0.3699 0.3723 0.4080

IMG+BOW 0.5866 0.4410 0.5196 0.4939
VIS+LSTM 0.5653 0.4610 0.4587 0.4552

2-VIS+BLSTM 0.5817 0.4479 0.4953 0.4734
FULL 0.6108 0.4766 0.5148 0.5028

By comparing the blind versions of the BOW and LSTM models, we hypothesize that in Image QA
tasks, and in particular on the simple questions studied here, sequential word interaction may not be
as important as in other natural language tasks.

It is also interesting that the blind model does not lose much on the DAQUAR dataset, We speculate
that it is likely that the ImageNet images are very different from the indoor scene images, which
are mostly composed of furniture. However, the non-blind models outperform the blind models
by a large margin on COCO-QA. There are three possible reasons: (1) the objects in MS-COCO
resemble the ones in ImageNet more; (2) MS-COCO images have fewer objects whereas the indoor
scenes have considerable clutter; and (3) COCO-QA has more data to train complex models.

There are many interesting examples but due to space limitations we can only show a few in Fig-
ure 1 and Figure 3; full results are available at http://www.cs.toronto.edu/˜mren/
imageqa/results. For some of the images, we added some extra questions (the ones have
an “a” in the question ID); these provide more insight into a model’s representation of the image and
question information, and help elucidate questions that our models may accidentally get correct. The
parentheses in the figures represent the confidence score given by the softmax layer of the respective
model.

Model Selection: We did not find that using different word embedding has a significant impact on
the final classification results. We observed that fine-tuning the word embedding results in better
performance and normalizing the CNN hidden image features into zero-mean and unit-variance
helps achieve faster training time. The bidirectional LSTM model can further boost the result by a
little.

Object Questions: As the original CNN was trained for the ImageNet challenge, the IMG+BOW
benefited significantly from its single object recognition ability. However, the challenging part is
to consider spatial relations between multiple objects and to focus on details of the image. Our
models only did a moderately acceptable job on this; see for instance the first picture of Figure 1 and
the fourth picture of Figure 3. Sometimes a model fails to make a correct decision but outputs the
most salient object, while sometimes the blind model can equally guess the most probable objects
based on the question alone (e.g., chairs should be around the dining table). Nonetheless, the FULL
model improves accuracy by 50% compared to IMG model, which shows the difference between
pure object classification and image question answering.

Counting: In DAQUAR, we could not observe any advantage in the counting ability of the
IMG+BOW and the VIS+LSTM model compared to the blind baselines. In COCO-QA there is
some observable counting ability in very clean images with a single object type. The models can
sometimes count up to five or six. However, as shown in the second picture of Figure 3, the ability
is fairly weak as they do not count correctly when different object types are present. There is a lot
of room for improvement in the counting task, and in fact this could be a separate computer vision
problem on its own.

Color: In COCO-QA there is a significant win for the IMG+BOW and the VIS+LSTM against
the blind ones on color-type questions. We further discovered that these models are not only able
to recognize the dominant color of the image but sometimes associate different colors to different
objects, as shown in the first picture of Figure 3. However, they still fail on a number of easy
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COCOQA 33827
What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a
What is the color of the couch?
Ground truth: red
IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522
How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520
How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

COCOQA 14855
Where are the ripe bananas sitting?
Ground truth: basket
IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)
BOW: bowl (0.48)

COCOQA 14855a
What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585
What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a
Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

Figure 3: Sample questions and responses of our system

examples. Adding prior knowledge provides an immediate gain on the IMG model in terms of
accuracy on Color and Number questions. The gap between the IMG+PRIOR and IMG+BOW
shows some localized color association ability in the CNN image representation.

5 Conclusion and Current Directions

In this paper, we consider the image QA problem and present our end-to-end neural network models.
Our model shows a reasonable understanding of the question and some coarse image understand-
ing, but it is still very naı̈ve in many situations. While recurrent networks are becoming a popular
choice for learning image and text, we showed that a simple bag-of-words can perform equally well
compared to a recurrent network that is borrowed from an image caption generation framework [1].
We proposed a more complete set of baselines which can provide potential insight for developing
more sophisticated end-to-end image question answering systems. As the currently available dataset
is not large enough, we developed an algorithm that helps us collect large scale image QA dataset
from image descriptions. Our question generation algorithm is extensible to many image description
datasets and can be automated without requiring extensive human effort. We hope that the release
of the new dataset will encourage more data-driven approaches to this problem in the future.

Image question answering is a fairly new research topic, and the approach we present here has a
number of limitations. First, our models are just answer classifiers. Ideally we would like to permit
longer answers which will involve some sophisticated text generation model or structured output.
But this will require an automatic free-form answer evaluation metric. Second, we are only focusing
on a limited domain of questions. However, this limited range of questions allow us to study the
results more in depth. Lastly, it is also hard to interpret why the models output a certain answer.
By comparing our models with some baselines we can roughly infer whether they understood the
image. Visual attention is another future direction, which could both improve the results (based on
recent successes in image captioning [8]) as well as help explain the model prediction by examining
the attention output at every timestep.
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