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Abstract

Communication remains the most significant bottleneck in the performance of
distributed optimization algorithms for large-scale machine learning. In this pa-
per, we propose a communication-efficient framework, COCOA, that uses local
computation in a primal-dual setting to dramatically reduce the amount of nec-
essary communication. We provide a strong convergence rate analysis for this
class of algorithms, as well as experiments on real-world distributed datasets with
implementations in Spark. In our experiments, we find that as compared to state-
of-the-art mini-batch versions of SGD and SDCA algorithms, COCOA converges
to the same .001-accurate solution quality on average 25× as quickly.

1 Introduction

With the immense growth of available data, developing distributed algorithms for machine learning
is increasingly important, and yet remains a challenging topic both theoretically and in practice. On
typical real-world systems, communicating data between machines is vastly more expensive than
reading data from main memory, e.g. by a factor of several orders of magnitude when leveraging
commodity hardware.1 Yet, despite this reality, most existing distributed optimization methods for
machine learning require significant communication between workers, often equalling the amount of
local computation (or reading of local data). This includes for example popular mini-batch versions
of online methods, such as stochastic subgradient (SGD) and coordinate descent (SDCA).

In this work, we target this bottleneck. We propose a distributed optimization framework that allows
one to freely steer the trade-off between communication and local computation. In doing so, the
framework can be easily adapted to the diverse spectrum of available large-scale computing systems,
from high-latency commodity clusters to low-latency supercomputers or the multi-core setting.

Our new framework, COCOA (Communication-efficient distributed dual Coordinate Ascent), sup-
ports objectives for linear reguarlized loss minimization, encompassing a broad class of machine
learning models. By leveraging the primal-dual structure of these optimization problems, COCOA
effectively combines partial results from local computation while avoiding conflict with updates si-
multaneously computed on other machines. In each round, COCOA employs steps of an arbitrary
dual optimization method on the local data on each machine, in parallel. A single update vector is
then communicated to the master node. For example, when choosing to perform H iterations (usu-
ally order of the data size n) of an online optimization method locally per round, our scheme saves
a factor of H in terms of communication compared to the corresponding naive distributed update

∗Both authors contributed equally.
1On typical computers, the latency for accessing data in main memory is in the order of 100 nanoseconds.

In contrast, the latency for sending data over a standard network connection is around 250,000 nanoseconds.
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scheme (i.e., updating a single point before communication). When processing the same number of
datapoints, this is clearly a dramatic savings.

Our theoretical analysis (Section 4) shows that this significant reduction in communication cost
comes with only a very moderate increase in the amount of total computation, in order to reach
the same optimization accuracy. We show that, in general, the distributed COCOA framework will
inherit the convergence rate of the internally-used local optimization method. When using SDCA
(randomized dual coordinate ascent) as the local optimizer and assuming smooth losses, this con-
vergence rate is geometric.

In practice, our experiments with the method implemented on the fault-tolerant Spark platform [1]
confirm both the clock time performance and huge communication savings of the proposed method
on a variety distributed datasets. Our experiments consistently show order of magnitude gains over
traditional mini-batch methods of both SGD and SDCA, and significant gains over the faster but
theoretically less justified local SGD methods.

Related Work. As we discuss below (Section 5), our approach is distinguished from recent work
on parallel and distributed optimization [2, 3, 4, 5, 6, 7, 8, 9] in that we provide a general framework
for improving the communication efficiency of any dual optimization method. To the best of our
knowledge, our work is the first to analyze the convergence rate for an algorithm with this level
of communication efficiency, without making data-dependent assumptions. The presented analysis
covers the case of smooth losses, but should also be extendable to the non-smooth case. Existing
methods using mini-batches [4, 2, 10] are closely related, though our algorithm makes significant
improvements by immediately applying all updates locally while they are processed, a scheme that
is not considered in the classic mini-batch setting. This intuitive modification results in dramatically
improved empirical results and also strengthens our theoretical convergence rate. More precisely,
the convergence rate shown here only degrades with the number of workers K, instead of with the
significantly larger mini-batch-size (typically order n) in the case of mini-batch methods.

Our method builds on a closely related recent line of work of [2, 3, 11, 12]. We generalize the algo-
rithm of [2, 3] by allowing the use of arbitrary (dual) optimization methods as the local subroutine
within our framework. In the special case of using coordinate ascent as the local optimizer, the
resulting algorithm is very similar, though with a different computation of the coordinate updates.
Moreover, we provide the first theoretical convergence rate analysis for such methods, without mak-
ing strong assumptions on the data.

The proposed COCOA framework in its basic variant is entirely free of tuning parameters or learning
rates, in contrast to SGD-based methods. The only choice to make is the selection of the internal lo-
cal optimization procedure, steering the desired trade-off between communication and computation.
When choosing a primal-dual optimizer as the internal procedure, the duality gap readily provides a
fair stopping criterion and efficient accuracy certificates during optimization.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we describe the prob-
lem setting of interest. Section 3 outlines the proposed framework, COCOA, and the convergence
analysis of this method is presented in Section 4. We discuss related work in Section 5, and compare
against several other state-of-the-art methods empirically in Section 6.

2 Setup

A large class of methods in machine learning and signal processing can be posed as the minimization
of a convex loss function of linear predictors with a convex regularization term:

min
w∈Rd

[
P (w) :=

λ

2
‖w‖2 +

1

n

n∑
i=1

`i(w
Txi)

]
, (1)

Here the data training examples are real-valued vectors xi ∈ Rd; the loss functions `i, i = 1, . . . , n
are convex and depend possibly on labels yi ∈ R; and λ > 0 is the regularization parameter. Using
the setup of [13], we assume the regularizer is the `2-norm for convenience. Examples of this class
of problems include support vector machines, as well as regularized linear and logistic regression,
ordinal regression, and others.
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The most popular method to solve problems of the form (1) is the stochastic subgradient method
(SGD) [14, 15, 16]. In this setting, SGD becomes an online method where every iteration only
requires access to a single data example (xi, yi), and the convergence rate is well-understood.

The associated conjugate dual problem of (1) takes the following form, and is defined over one dual
variable per each example in the training set.

max
α∈Rn

[
D(α) := −λ

2
‖Aα‖2 − 1

n

n∑
i=1

`∗i (−αi)
]
, (2)

where `∗i is the conjugate (Fenchel dual) of the loss function `i, and the data matrix A ∈ Rd×n
collects the (normalized) data examples Ai := 1

λnxi in its columns. The duality comes with the
convenient mapping from dual to primal variables w(α) := Aα as given by the optimality con-
ditions [13]. For any configuration of the dual variables α, we have the duality gap defined as
P (w(α))−D(α). This gap is a computable certificate of the approximation quality to the unknown
true optimum P (w∗) = D(α∗), and therefore serves as a useful stopping criteria for algorithms.

For problems of the form (2), coordinate descent methods have proven to be very efficient, and come
with several benefits over primal methods. In randomized dual coordinate ascent (SDCA), updates
are made to the dual objective (2) by solving for one coordinate completely while keeping all others
fixed. This algorithm has been implemented in a number of software packages (e.g. LibLinear [17]),
and has proven very suitable for use in large-scale problems, while giving stronger convergence
results than the primal-only methods (such as SGD), at the same iteration cost [13]. In addition
to superior performance, this method also benefits from requiring no stepsize, and having a well-
defined stopping criterion given by the duality gap.

3 Method Description

The COCOA framework, as presented in Algorithm 1, assumes that the data {(xi, yi)}ni=1 for a
regularized loss minimization problem of the form (1) is distributed over K worker machines. We
associate with the datapoints their corresponding dual variables {αi}ni=1, being partitioned between
the workers in the same way. The core idea is to use the dual variables to efficiently merge the
parallel updates from the different workers without much conflict, by exploiting the fact that they all
work on disjoint sets of dual variables.

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent
Input: T ≥ 1, scaling parameter 1 ≤ βK ≤ K (default: βK := 1).
Data: {(xi, yi)}ni=1 distributed over K machines
Initialize: α(0)

[k] ← 0 for all machines k, and w(0) ← 0

for t = 1, 2, . . . , T
for all machines k = 1, 2, . . . ,K in parallel

(∆α[k],∆wk)← LOCALDUALMETHOD(α
(t−1)
[k] ,w(t−1))

α
(t)
[k] ← α

(t−1)
[k] + βK

K ∆α[k]

end
reduce w(t) ← w(t−1) + βK

K

∑K
k=1 ∆wk

end

In each round, the K workers in parallel perform some steps of an arbitrary optimization method,
applied to their local data. This internal procedure tries to maximize the dual formulation (2), only
with respect to their own local dual variables. We call this local procedure LOCALDUALMETHOD,
as specified in the template Procedure A. Our core observation is that the necessary information
each worker requires about the state of the other dual variables can be very compactly represented
by a single primal vector w ∈ Rd, without ever sending around data or dual variables between the
machines.

Allowing the subroutine to process more than one local data example per round dramatically reduces
the amount of communication between the workers. By definition, COCOA in each outer iteration
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Procedure A: LOCALDUALMETHOD: Dual algorithm for prob. (2) on a single coordinate block k

Input: Local α[k] ∈ Rnk , and w ∈ Rd consistent with other coordinate blocks of α s.t. w = Aα
Data: Local {(xi, yi)}nk

i=1
Output: ∆α[k] and ∆w := A[k]∆α[k]

Procedure B: LOCALSDCA: SDCA iterations for problem (2) on a single coordinate block k

Input: H ≥ 1, α[k] ∈ Rnk , and w ∈ Rd consistent with other coordinate blocks of α s.t. w = Aα
Data: Local {(xi, yi)}nk

i=1

Initialize: w(0) ← w, ∆α[k] ← 0 ∈ Rnk

for h = 1, 2, . . . ,H
choose i ∈ {1, 2, . . . , nk} uniformly at random
find ∆α maximizing −λn2 ‖w

(h−1) + 1
λn∆αxi‖2 − `∗i

(
− (α

(h−1)
i + ∆α)

)
α
(h)
i ← α

(h−1)
i + ∆α

(∆α[k])i ← (∆α[k])i + ∆α

w(h) ← w(h−1) + 1
λn∆αxi

end
Output: ∆α[k] and ∆w := A[k]∆α[k]

only requires communication of a single vector for each worker, that is ∆wk ∈ Rd. Further, as we
will show in Section 4, COCOA inherits the convergence guarantee of any algorithm run locally on
each node in the inner loop of Algorithm 1. We suggest to use randomized dual coordinate ascent
(SDCA) [13] as the internal optimizer in practice, as implemented in Procedure B, and also used in
our experiments.

Notation. In the same way the data is partitioned across theK worker machines, we write the dual
variable vector asα = (α[1], . . . ,α[K]) ∈ Rn with the corresponding coordinate blocksα[k] ∈ Rnk

such that
∑
k nk = n. The submatrix A[k] collects the columns of A (i.e. rescaled data examples)

which are available locally on the k-th worker. The parameter T determines the number of outer
iterations of the algorithm, while when using an online internal method such as LOCALSDCA, then
the number of inner iterations H determines the computation-communication trade-off factor.

4 Convergence Analysis

Considering the dual problem (2), we define the local suboptimality on each coordinate block as:

εD,k(α) := max
α̂[k]∈Rnk

D((α[1], . . . , α̂[k], . . . ,α[K]))−D((α[1], . . . ,α[k], . . . ,α[K])), (3)

that is how far we are from the optimum on block k with all other blocks fixed. Note that this differs
from the global suboptimality maxα̂D(α̂)−D((α[1], . . . ,α[K])).
Assumption 1 (Local Geometric Improvement of LOCALDUALMETHOD). We assume that there
exists Θ ∈ [0, 1) such that for any given α, LOCALDUALMETHOD when run on block k alone
returns a (possibly random) update ∆α[k] such that

E[εD,k((α[1], . . . ,α[k−1],α[k] + ∆α[k],α[k+1], . . . ,α[K]))] ≤ Θ · εD,k(α). (4)

Note that this assumption is satisfied for several available implementations of the inner procedure
LOCALDUALMETHOD, in particular for LOCALSDCA, as shown in the following Proposition.

From here on, we assume that the input data is scaled such that ‖xi‖ ≤ 1 for all datapoints. Proofs
of all statements are provided in the supplementary material.
Proposition 1. Assume the loss functions `i are (1/γ)-smooth. Then for using LOCALSDCA,
Assumption 1 holds with

Θ =

(
1− λnγ

1 + λnγ

1

ñ

)H
. (5)

where ñ := maxk nk is the size of the largest block of coordinates.
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Theorem 2. Assume that Algorithm 1 is run for T outer iterations on K worker machines, with
the procedure LOCALDUALMETHOD having local geometric improvement Θ, and let βK := 1.
Further, assume the loss functions `i are (1/γ)-smooth. Then the following geometric convergence
rate holds for the global (dual) objective:

E[D(α∗)−D(α(T ))] ≤
(

1− (1−Θ)
1

K

λnγ

σ + λnγ

)T (
D(α∗)−D(α(0))

)
. (6)

Here σ is any real number satisfying

σ ≥ σmin := max
α∈Rn

λ2n2
∑K
k=1‖A[k]α[k]‖2 − ‖Aα‖2

‖α‖2
≥ 0. (7)

Lemma 3. If K = 1 then σmin = 0. For any K ≥ 1, when assuming ‖xi‖ ≤ 1 ∀i, we have

0 ≤ σmin ≤ ñ.
Moreover, if datapoints between different workers are orthogonal, i.e. (ATA)i,j = 0 ∀i, j such that
i and j do not belong to the same part, then σmin = 0.

If we choose K = 1 then, Theorem 2 together with Lemma 3 implies that

E[D(α∗)−D(α(T ))] ≤ ΘT
(
D(α∗)−D(α(0))

)
,

as expected, showing that the analysis is tight in the special case K = 1. More interestingly, we
observe that for any K, in the extreme case when the subproblems are solved to optimality (i.e.
letting H →∞ in LOCALSDCA), then the algorithm as well as the convergence rate match that of
serial/parallel block-coordinate descent [18, 19].

Note: If choosing the starting point as α(0) := 0 as in the main algorithm, then it is known that
D(α∗)−D(α(0)) ≤ 1 (see e.g. Lemma 20 in [13]).

5 Related Work

Distributed Primal-Dual Methods. Our approach is most closely related to recent work by [2, 3],
which generalizes the distributed optimization method for linear SVMs as in [11] to the primal-dual
setting considered here (which was introduced by [13]). The difference between our approach and
the ‘practical’ method of [2] is that our internal steps directly correspond to coordinate descent iter-
ations on the global dual objective (2), for coordinates in the current block, while in [3, Equation 8]
and [2], the inner iterations apply to a slightly different notion of the sub-dual problem defined on
the local data. In terms of convergence results, the analysis of [2] only addresses the mini-batch
case without local updates, while the more recent paper [3] shows a convergence rate for a variant of
COCOA with inner coordinate steps, but under the unrealistic assumption that the data is orthogonal
between the different workers. In this case, the optimization problems become independent, so that
an even simpler single-round communication scheme summing the individual resulting models w
would give an exact solution. Instead, we show a linear convergence rate for the full problem class
of smooth losses, without any assumptions on the data, in the same generality as the non-distributed
setting of [13].

While the experimental results in all papers [11, 2, 3] are encouraging for this type of method, they
do not yet provide a quantitative comparison of the gains in communication efficiency, or compare
to the analogous SGD schemes that use the same distribution and communication patterns, which is
the main goal or our experiments in Section 6. For the special case of linear SVMs, the first paper
to propose the same algorithmic idea was [11], which used LibLinear in the inner iterations. How-
ever, the proposed algorithm [11] processes the blocks sequentially (not in the parallel or distributed
setting). Also, it is assumed that the subproblems are solved to near optimality on each block be-
fore selecting the next, making the method essentially standard block-coordinate descent. While
no convergence rate was given, the empirical results in the journal paper [12] suggest that running
LibLinear for just one pass through the local data performs well in practice. Here, we prove this,
quantify the communication efficiency, and show that fewer local steps can improve the overall per-
formance. For the LASSO case, [7] has proposed a parallel coordinate descent method converging
to the true optimum, which could potentially also be interpreted in our framework here.
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Mini-Batches. Another closely related avenue of research includes methods that use mini-batches
to distribute updates. In these methods, a mini-batch, or sample, of the data examples is selected
for processing at each iteration. All updates within the mini-batch are computed based on the same
fixed parameter vector w, and then these updates are either added or averaged in a reduce step
and communicated back to the worker machines. This concept has been studied for both SGD and
SDCA, see e.g. [4, 10] for the SVM case. The so-called naive variant of [2] is essentially identical
to mini-batch dual coordinate descent, with a slight difference in defining the sub-problems.

As is shown in [2] and below in Section 6, the performance of these algorithms suffers when pro-
cessing large batch sizes, as they do not take local updates immediately into account. Furthermore,
they are very sensitive to the choice of the parameter βb, which controls the magnitude of combining
all updates between βb := 1 for (conservatively) averaging, and βb := b for (aggressively) adding
the updates (here we denote b as the size of the selected mini-batch, which can be of size up to n).
This instability is illustrated by the fact that even the change of βb := 2 instead of βb := 1 can
lead to divergence of coordinate descent (SDCA) in the simple case of just two coordinates [4] .
In practice it can be very difficult to choose the correct data-dependent parameter βb especially for
large mini-batch sizes b ≈ n, as the parameter range spans many orders of magnitude, and directly
controls the step size of the resulting algorithm, and therefore the convergence rate [20, 21]. For
sparse data, the work of [20, 21] gives some data dependent choices of βb which are safe.

Known convergence rates for the mini-batch methods degrade linearly with the growing batch size
b ≈ Θ(n). More precisely, the improvement in objective function per example processed degrades
with a factor of βb in [4, 20, 21]. In contrast, our convergence rate as shown in Theorem 2 only
degrades with the much smaller number of worker machines K, which in practical applications is
often several orders of magnitudes smaller than the mini-batch size b.

Single Round of Communication. One extreme is to consider methods with only a single round
of communication (e.g. one map-reduce operation), as in [22, 6, 23]. The output of these methods is
the average of K individual models, trained only on the local data on each machine. In [22], the au-
thors give conditions on the data and computing environment under which these one-communication
algorithms may be sufficient. In general, however, the true optimum of the original problem (1) is
not the average of these K models, no matter how accurately the subproblems are solved [24].

Naive Distributed Online Methods, Delayed Gradients, and Multi-Core. On the other extreme,
a natural way to distribute updates is to let every machine send updates to the master node (some-
times called the “parameter server”) as soon as they are performed. This is what we call the naive
distributed SGD / CD in our experiments. The amount of communication for such naive distributed
online methods is the same as the number of data examples processed. In contrast to this, the num-
ber of communicated vectors in our method is divided by H , that is the number of inner local steps
performed per outer iteration, which can be Θ(n).

The early work of [25] introduced the nice framework of gradient updates where the gradients come
with some delays, i.e. are based on outdated iterates, and shows some robust convergence rates.
In the machine learning setting, [26] and the later work of [27] have provided additional insights
into these types of methods. However, these papers study the case of smooth objective functions
of a sum structure, and so do not directly apply to general case we consider here. In the same
spirit, [5] implements SGD with communication-intense updates after each example processed, al-
lowing asynchronous updates again with some delay. For coordinate descent, the analogous ap-
proach was studied in [28]. Both methods [5, 28] are H times less efficient in terms of communica-
tion when compared to COCOA, and are designed for multi-core shared memory machines (where
communication is as fast as memory access). They require the same amount of communication as
naive distributed SGD / CD, which we include in our experiments in Section 6, and a slightly larger
number of iterations due to the asynchronicity. The 1/t convergence rate shown in [5] only holds
under strong sparsity assumptions on the data. A more recent paper [29] deepens the understand-
ing of such methods, but still only applies to very sparse data. For general data, [30] theoretically
shows that 1/ε2 communications rounds of single vectors are enough to obtain ε-quality for linear
classifiers, with the rate growing with K2 in the number of workers. Our new analysis here makes
the dependence on 1/ε logarithmic.
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6 Experiments

In this section, we compare COCOA to traditional mini-batch versions of stochastic dual coordinate
ascent and stochastic gradient descent, as well as the locally-updating version of stochastic gradient
descent. We implement mini-batch SDCA (denoted mini-batch-CD) as described in [4, 2]. The
SGD-based methods are mini-batch and locally-updating versions of Pegasos [16], differing only in
whether the primal vector is updated locally on each inner iteration or not, and whether the resulting
combination/communication of the updates is by an average over the total size KH of the mini-
batch (mini-batch-SGD) or just over the number of machines K (local-SGD). For each algorithm,
we additionally study the effect of scaling the average by a parameter βK , as first described in [4],
while noting that it is a benefit to avoid having to tune this data-dependent parameter.

We apply these algorithms to standard hinge loss `2-regularized support vector machines, using
implementations written in Spark on m1.large Amazon EC2 instances [1]. Though this non-smooth
case is not yet covered in our theoretical analysis, we still see remarkable empirical performance.
Our results indicate that COCOA is able to converge to .001-accurate solutions nearly 25× as fast
compared the other algorithms, when all use βK = 1. The datasets used in these analyses are
summarized in Table 1, and were distributed among K = 4, 8, and 32 nodes, respectively. We use
the same regularization parameters as specified in [16, 17].

Table 1: Datasets for Empirical Study

Dataset Training (n) Features (d) Sparsity λ Workers (K)

cov 522,911 54 22.22% 1e-6 4
rcv1 677,399 47,236 0.16% 1e-6 8
imagenet 32,751 160,000 100% 1e-5 32

In comparing each algorithm and dataset, we analyze progress in primal objective value as a function
of both time (Figure 1) and communication (Figure 2). For all competing methods, we present the
result for the batch size (H) that yields the best performance in terms of reduction in objective
value over time. For the locally-updating methods (COCOA and local-SGD), these tend to be larger
batch sizes corresponding to processing almost all of the local data at each outer step. For the
non-locally updating mini-batch methods, (mini-batch SDCA [4] and mini-batch SGD [16]), these
typically correspond to smaller values ofH , as averaging the solutions to guarantee safe convergence
becomes less of an impediment for smaller batch sizes.
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Figure 1: Primal Suboptimality vs. Time for Best Mini-Batch Sizes (H): For βK = 1, COCOA converges
more quickly than all other algorithms, even when accounting for different batch sizes.

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

10
2

Cov

# of Communicated Vectors

L
o

g
 P

ri
m

a
l 
S

u
b

o
p

ti
m

a
lit

y

 

 

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

10
2

Cov

COCOA (H=1e5)

minibatch−CD (H=100)

local−SGD (H=1e5)

batch−SGD (H=1)

0 100 200 300 400 500 600 700
10

−6

10
−4

10
−2

10
0

10
2

RCV1

# of Communicated Vectors

L
o

g
 P

ri
m

a
l 
S

u
b

o
p

ti
m

a
lit

y

 

 

0 100 200 300 400 500 600 700
10

−6

10
−4

10
−2

10
0

10
2

RCV1

COCOA (H=1e5)

minibatch−CD (H=100)

local−SGD (H=1e4)

batch−SGD (H=100)

0 500 1000 1500 2000 2500 3000
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

# of Communicated Vectors

L
o

g
 P

ri
m

a
l 
S

u
b

o
p

ti
m

a
lit

y

 

 

0 500 1000 1500 2000 2500 3000
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

COCOA (H=1e3)

mini−batch−CD (H=1)

local−SGD (H=1e3)

mini−batch−SGD (H=10)

Figure 2: Primal Suboptimality vs. # of Communicated Vectors for Best Mini-Batch Sizes (H): A clear
correlation is evident between the number of communicated vectors and wall-time to convergence (Figure 1).
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First, we note that there is a clear correlation between the wall-time spent processing each dataset
and the number of vectors communicated, indicating that communication has a significant effect on
convergence speed. We see clearly that COCOA is able to converge to a more accurate solution in all
datasets much faster than the other methods. On average, COCOA reaches a .001-accurate solution
for these datasets 25x faster than the best competitor. This is a testament to the algorithm’s ability
to avoid communication while still making significant global progress by efficiently combining the
local updates of each iteration. The improvements are robust for both regimes n� d and n� d.
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Figure 3: Effect of H on COCOA.
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Figure 4: Best βK Scaling Values for H = 1e5 and H = 100.

In Figure 3 we explore the effect of H , the computation-communication trade-off factor, on the con-
vergence of COCOA for the Cov dataset on a cluster of 4 nodes. As described above, increasing H
decreases communication but also affects the convergence properties of the algorithm. In Figure 4,
we attempt to scale the averaging step of each algorithm by using various βK values, for two differ-
ent batch sizes on the Cov dataset (H = 1e5 and H = 100). We see that though βK has a larger
impact on the smaller batch size, it is still not enough to improve the mini-batch algorithms beyond
what is achieved by COCOA and local-SGD.

7 Conclusion

We have presented a communication-efficient framework for distributed dual coordinate ascent algo-
rithms that can be used to solve large-scale regularized loss minimization problems. This is crucial
in settings where datasets must be distributed across multiple machines, and where communication
amongst nodes is costly. We have shown that the proposed algorithm performs competitively on
real-world, large-scale distributed datasets, and have presented the first theoretical analysis of this
algorithm that achieves competitive convergence rates without making additional assumptions on
the data itself.

It remains open to obtain improved convergence rates for more aggressive updates corresponding
to βK > 1, which might be suitable for using the ‘safe’ updates techniques of [4] and the related
expected separable over-approximations of [18, 19], here applied to K instead of n blocks. Further-
more, it remains open to show convergence rates for local SGD in the same communication efficient
setting as described here.
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