
Learning Chordal Markov Networks
by Dynamic Programming

Kustaa Kangas Teppo Niinimäki Mikko Koivisto
Helsinki Institute for Information Technology HIIT

Department of Computer Science, University of Helsinki
{jwkangas,tzniinim,mkhkoivi}@cs.helsinki.fi

Abstract

We present an algorithm for finding a chordal Markov network that maximizes
any given decomposable scoring function. The algorithm is based on a recursive
characterization of clique trees, and it runs in O(4n) time for n vertices. On
an eight-vertex benchmark instance, our implementation turns out to be about
ten million times faster than a recently proposed, constraint satisfaction based
algorithm (Corander et al., NIPS 2013). Within a few hours, it is able to solve
instances up to 18 vertices, and beyond if we restrict the maximum clique size.
We also study the performance of a recent integer linear programming algorithm
(Bartlett and Cussens, UAI 2013). Our results suggest that, unless we bound the
clique sizes, currently only the dynamic programming algorithm is guaranteed to
solve instances with around 15 or more vertices.

1 Introduction

Structure learning in Markov networks, also known as undirected graphical models or Markov
random fields, has attracted considerable interest in computational statistics, machine learning, and
artificial intelligence. Natural score-and-search formulations of the task have, however, proved to be
computationally very challenging. For example, Srebro [1] showed that finding a maximum-likelihood
chordal (or triangulated or decomposable) Markov network is NP-hard even for networks of treewidth
at most 2, in sharp contrast to the treewidth-1 case [2]. Consequently, various approximative
approaches and local search heuristics have been proposed [3, 1, 4, 5, 6, 7, 8, 9, 10, 11].

Only very recently, Corander et al. [12] published the first non-trivial algorithm that is guaranteed to
find a globally optimal chordal Markov network. It is based on expressing the search space in terms of
logical constraints and employing the state-of-the-art solver technology equipped with optimization
capabilities. To this end, they adopt the usual clique tree, or junction tree, representation of chordal
graphs, and work with a particular characterization of clique trees, namely, that for any vertex of the
graph the cliques containing that vertex induce a connected subtree in the clique tree. The key idea
is to rephrase this property as what they call a balancing condition: for any vertex, the number of
cliques that contain it is one larger than the number of edges (the intersection of the adjacent cliques)
that contain it. They show that with appropriate, efficient encodings of the constraints, an eight-vertex
instance can be solved to the optimum in a few days of computing, which could have been impossible
by a brute-force search. However, while the constraint satisfaction approach enables exploiting the
powerful technology, it is currently not clear, whether it scales to larger instances.

Here, we investigate an alternative approach to find an optimal chordal Markov network. Like the
work of Corander at al. [12], our algorithm stems from a particular characterization of clique trees of
chordal graphs. However, our characterization is quite different, being recursive in nature. It concords
the structure of common scoring functions and so yields a natural dynamic programming algorithm
that grows an optimal clique tree by selecting its cliques one by one. In its basic form, the algorithm

1

is very inefficient. Fortunately, the fine structure of the scoring function enables us to further factorize
the main dynamic programming step and so bring the time requirement down to O(4n) for instances
with n vertices. We also show that by setting the maximum clique size, equivalently the treewidth
(plus one), to w ≤ n/4, the time requirement can be improved to O

(
3n−w

(
n
w

)
w
)
.

While our recursive characterization of clique trees and the resulting dynamic programming algorithm
are new, they are similar in spirit to a recent work by Korhonen and Parviainen [13]. Their algorithm
finds a bounded-treewidth Bayesian network structure that maximizes a decomposable score, running
in 3nnw+O(1) time, where w is the treewidth bound. For large w it thus is superexponentially slower
than our algorithm. The problems solved by the two algorithms are, of course, different: the class of
treewidth-w Bayesian networks properly extends the class of treewidth-w chordal Markov networks.
There is also more recent work for finding bounded-treewidth Bayesian networks by employing
constraint solvers: Berg et al. [14] solve the problem by casting into maximum satisfiability, while
Parviainen et al. [15] cast into integer linear programming. For unbounded-treewidth Bayesian
networks, O(2nn2)-time algorithms based on dynamic programming are available [16, 17, 18].
However, none of these dynamic programming algorithms, nor their A* search based variant [19],
enables adding the constraints of chordality or bounded width.

But the integer linear programming approach to finding optimal Bayesian networks, especially the
recent implementation by Bartlett and Cussens [20], also enables adding the further constraints.1
We are not aware of any reasonable worst-case bounds for the algorithm’s time complexity, nor any
previous applications of the algorithm to the problem of learning chordal Markov networks. As a
second contribution of this paper, we report on an experimental study of the algorithm’s performance,
using both synthetic data and some frequently used machine learning benchmark datasets.

The remainder of this article begins by formulating the learning task as an optimization problem. Next
we present our recursive characterization of clique trees and a derivation of the dynamic programming
algorithm, with a rigorous complexity analysis. The experimental setting and results are reported in a
dedicated section. We end with a brief discussion.

2 The problem of learning chordal Markov networks

We adopt the hypergraph treatment of chordal Markov networks. For a gentler presentation and
proofs, see Lauritzen and Spiegelhalter [21, Sections 6 and 7], Lauritzen [22], and references therein.

Let p be a positive probability function over a product of n state spaces. Let G be an undirected
graph on the vertex set V = {1, . . . , n}, and call any maximal set of pairwise adjacent vertices of G a
clique. Together, G and p form a Markov network if p(x1, . . . , xn) =

∏
C ψC(xC), where C runs

through the cliques of G and each ψC is a mapping to positive reals. Here xC denotes (xv : v ∈ C).
The factors ψC take a particularly simple form when the graph G is chordal, that is, when every cycle
of G of length greater than three has a chord, which is an edge of G joining two nonconsecutive
vertices of the cycle. The chordality requirement can be expressed in terms of hypergraphs. Consider
first an arbitrary hypergraph on V , identified with a collection C of subsets of V such that each
element of V belongs to some set in C. We call C reduced if no set in C is a proper subset of another
set in C, and acyclic if, in addition, the sets in C admit an ordering C1, . . . , Cm that has the running
intersection property: for each 2 ≤ j ≤ m, the intersection Sj = Cj ∩ (C1 ∪ · · · ∪Cj−1) is a subset
of some Ci with i < j. We call the sets Sj the separators. The multiset of separators, denoted by
S, does not depend on the ordering and is thus unique for an acyclic hypergraph. Now, letting C be
the set of cliques of the chordal graph G, it is known that the hypergraph C is acyclic and that each
factor ψCj

(xCj
) can be specified as the ratio p(xCj

)/p(xSj
) of marginal probabilities (where we

define p(xS1
) = 1). Also the converse holds: by connecting all pairs of vertices within each set of an

acyclic hypergraph we obtain a chordal graph.

Given multiple observations over the product state space, the data, we associate with each hyper-
graph C on V a score s(C) =

∏
C∈C p(C)

/∏
S∈S p(S), where the local score p(A) measures the

probability (density) of the data projected on A ⊆ V , possibly extended by some structure prior
or penalization term. The structure learning problem is to find an acyclic hypergraph C on V that

1We thank an anonymous reviewer of an earlier version of this work for noticing this fact, which apparently
was not well known in the community, including the authors and reviewers of Corander’s et al. work [12].

2

maximizes the score s(C). This formulation covers a Bayesian approach, in which each p(A) is the
marginal likelihood for the data on A under a Dirichlet–multinomial model [23, 7, 12], but also the
maximum-likelihood formulation, in which each p(A) is the empirical probability of the data on
A [23, 1]. Motivated by these instantiations, we will assume that for any given A the value p(A) can
be efficiently computed, and we treat the values as the problem input.

Our approach to the problem exploits the fact [22, Prop. 2.27] that a reduced hypergraph C is acyclic
if and only if there is a junction tree T for C, that is, an undirected tree on the node set C that has the
junction property (JP): for any two nodes A and B in C and any C on the unique path in T between
A and B we have A ∩ B ⊆ C. Furthermore, by labeling each edge of T by the intersection of its
endpoints, the edge labels amount to the multiset of separators of the hypergraph C. Thus a junction
tree gives the separators explicitly, which motivates us to write s(T) for the respective score s(C)
and solve the structure learning problem by finding a junction tree T over V that maximizes s(T).
Here and henceforth, we say that a tree is over a set if the union of the tree’s nodes equals the set.

As our problem formulation does not explicitly refer to the underlying chordal graph and cliques, we
will speak of junction trees instead of equivalent but semantically more loaded clique trees. From
here on, a junction tree refers specifically to a junction tree whose node set is a reduced hypergraph.

3 Recursive characterization and dynamic programming

The score of a junction tree obeys a recursive factorization along subtrees (by rooting the tree at any
node), given in Section 3.2 below. While this is the essential structural property of the score for our
dynamic programming algorithm, it does not readily yield the needed recurrence for the optimal
score. Indeed, we need a characterization of, not a fixed junction tree, but the entire search space
of junction trees that concords the factorization of the score. We next give such a characterization
before we proceed to the derivation and analysis of the dynamic programming algorithm.

3.1 Recursive partition trees

We characterize the set of junction trees by expressing the ways in which they can partition V . The
idea is that when any tree of interest is rooted at some node, the subtrees amount to a partition of not
only the remaining nodes in the tree (which holds trivially) but also the remaining vertices (contained
in the nodes); and the subtrees also satisfy this property. See Figure 1 for an illustration.

If T is a tree over a set S, we write C(T) for its node set and V (T) for the union of its nodes, S. For
a familyR of subsets of a set S, we say thatR is a partition of S and denoteR @ S if the members
ofR are non-empty and pairwise disjoint, and their union is S.
Definition 1 (Recursive partition tree, RPT). Let T be a tree over a finite set V , rooted at C ∈
C(T). Denote byC1, . . . , Ck the children ofC, by Ti the subtree rooted atCi, and letRi = V (Ti)\C.
We say that T is a recursive partition tree (RPT) if it satisfies the following three conditions: (R1)
each Ti is a RPT over Ci ∪Ri, (R2) {R1, . . . , Rk} @ V \ C, and (R3) C ∩ Ci is a proper subset of
both C and Ci. We denote by RPT(V,C) the set of all RPTs over V rooted at C.

We now present the following theorems to establish that, when edge directions are ignored, the
definitions of junction trees and recursive partition trees are equivalent.
Theorem 1. A junction tree T is a RPT when rooted at any C ∈ C(T).
Theorem 2. A RPT is a junction tree (when considered undirected).

Our proofs of these results will use the following two observations:
Observation 3. A subtree of a junction tree is also a junction tree.
Observation 4. If T is a RPT, so is its every subtree rooted at any C ∈ C(T).

Proof of Theorem 1. Let T be a junction tree over V and consider an arbitrary C ∈ C(T). We show
by induction over the number of nodes that T is a RPT when rooted at C. Let Ci, Ti, and Ri be
defined as in Definition 1 and consider the three RPT conditions. If C is the only node in T , the
conditions hold trivially. Assume they hold up to n− 1 nodes and consider the case |C(T)| = n. We
show that each condition holds.

3

0

1

2

3
5

4
6

7

8

9

Figure 1: An example of a chordal graph and a
corresponding recursive partition. The root node
C = {3, 4, 5} (dark grey) partitions the remaining
vertices into three disjoint sets R1 = {0, 1, 2},
R2 = {6}, and R3 = {7, 8, 9} (light grey), which
are connected to the root node by its child nodes
C1 = {1, 2, 3}, C2 = {4, 5, 6}, and C3 = {5, 7}
respectively (medium grey).

(R1) By Observation 3 each Ti is a junction tree and thus, by the induction assumption, a RPT. It
remains to show that V (Ti) = Ci ∪ Ri. By definition both Ci ⊆ V (Ti) and Ri ⊆ V (Ti). Thus
Ci ∪ Ri ⊆ V (Ti). Assume then that x ∈ V (Ti), i.e. x ∈ C ′ for some C ′ ∈ C(Ti). If x /∈ Ri,
then by definition x ∈ C. Since Ci is on the path between C and C ′, by JP x ∈ Ci. Therefore
V (Ti) ⊆ Ci ∪Ri.

(R2) We show that the sets Ri partition V \ C. First, each Ri is non-empty since by definition of
reduced hypergraph Ci is non-empty and not contained in C. Second,

⋃
iRi =

⋃
i(V (Ti) \ C) =

(C ∪
⋃

i V (Ti)) \C =
⋃
C(T) \C = V \C. Finally, to see that Ri are pairwise disjoint, assume to

the contrary that x ∈ Ri ∩Rj for distinct Ri and Rj . This implies x ∈ A ∩B for some A ∈ C(Ti)
and B ∈ C(Tj). Now, by JP x ∈ C, which contradicts the definition of Ri.

(R3) Follows by the definition of reduced hypergraph.

Proof of Theorem 2. Assume now that T is a RPT over V . We show that T is a junction tree. To see
that T has JP, consider arbitrary A,B ∈ C(T). We show that A ∩B is a subset of every C ∈ C(T)
on the path between A and B.

Consider first the case that A is an ancestor of B and let B = C1, . . . , Cm = A be the path that
connects them. We show by induction over m that C1 ∩ Cm ⊆ Ci for every i = 1, . . . ,m. The base
case m = 1 is trivial. Assume m > 1 and the claim holds up to m− 1. If i = m, the claim is trivial.
Let i < m. Denote by Tm−1 the subtree rooted at Cm−1 and let Rm−1 = V (Tm−1) \ Cm. Since
C1 ⊆ V (Tm−1) we have that C1 ∩ Cm = (C1 ∩ V (Tm−1)) ∩ Cm = C1 ∩ (Cm ∩ V (Tm−1)). By
Observation 4 Tm−1 is a RPT. Therefore, from (R1) it follows that V (Tm−1) = Cm−1 ∪Rm−1 and
thus Cm ∩ V (Tm−1) = (Cm ∩ Cm−1) ∪ (Cm ∩ Rm−1) = Cm ∩ Cm−1. Plugging this above and
using the induction assumption we get C1 ∩ Cm = C1 ∩ (Cm ∩ Cm−1) ⊆ C1 ∩ Cm−1 ⊆ Ci.

Consider now the case that A and B have a least common ancestor C. By Observation 4, the subtree
rooted at C is a RPT. Thus, by (R1) and (R2) there are disjoint R and R′ such that A ⊆ C ∪R and
B ⊆ C ∪R′. Thus, A ∩B ⊆ C, and consequently A ∩B ⊆ A ∩ C. As we proved above, A ∩ C is
a subset of every node on the path between A and C, and therefore A ∩B is also a subset of every
such node. Similarly, A ∩ B is a subset of every node on the path between B and C. Combining
these results, we have that A ∩B is a subset of every node on the path between A and B.

Finally, to see that C(T) is reduced, assume the opposite, that A ⊆ B for distinct A,B ∈ C(T). Let
C be the node next to A on the path from A to B. By the initial assumption and JP A ⊆ A ∩B ⊆ C.
As either A or C is a child of the other, this contradicts (R3) in the subtree rooted at the parent.

3.2 The main recurrence

We want to find a junction tree T over V that maximizes the score s(T). By Theorems 1 and 2 this
is equivalent to finding a RPT T that maximizes s(T). Let T be a RPT rooted at C and denote by
C1, . . . , Ck the children of C and by Ti the subtree rooted at Ci. Then, the score factorizes as follows

s(T) = p(C)

k∏
i=1

s(Ti)
p(C ∩ Ci)

. (1)

To see this, observe that each term of s(T) is associated with a particular node or edge (separator) of
T . Thus the product of the s(Ti) consists of exactly the terms of s(T), except for the ones associated
with the root C of T and the edges between C and each Ci.

4

To make use of the above factorization, we introduce suitable constraints under which an optimal
tree can be constructed from subtrees that are, in turn, optimal with respect to analogous constraints
(cf. Bellman’s principle of optimality). Specifically, we define a function f that gives the score of an
optimal subtree over any subset of nodes as follows:
Definition 2. For S ⊂ V and ∅ 6= R ⊆ V \ S, let f(S,R) be the score of an optimal RPT over
S ∪R rooted at a proper superset of S. That is

f(S,R) = max
S ⊂ C ⊆ S ∪ R
T ∈RPT(S∪R,C)

s(T) .

Corollary 5. The score of an optimal RPT over V is given by f(∅, V).

We now show that f admits the following recurrence, which shall be used as the basis of our dynamic
programming algorithm.
Lemma 6. Let S ⊂ V and ∅ 6= R ⊆ V \ S. Then

f(S,R) = max
S ⊂ C ⊆ S ∪ R

{R1, . . . , Rk} @ R \ C
S1, . . . , Sk ⊂ C

p(C)

k∏
i=1

f(Si, Ri)

p(Si)
.

Proof. We first show inductively that the recurrence is well defined. Assume that the conditions
S ⊂ V and ∅ 6= R ⊆ V \ S hold. Observe that R is non-empty, every set has a partition, and C
is selected to be non-empty. Therefore, all three maximizations are over non-empty ranges and it
remains to show that the product over i = 1, . . . , k is well defined. If |R| = 1, then R \ C = ∅ and
the product equals 1 by convention. Assume now that f(S,R) is defined when |R| < m and consider
the case |R| = m. By construction Si ⊂ V , ∅ 6= Ri ⊆ V \Si and |Ri| < |R| for every i = 1, . . . , k.
Thus, by the induction assumption each f(Si, Ri) is defined and therefore the product is defined.

We now show that the recurrence indeed holds. Let the rootC in Definition 2 be fixed and consider the
maximization over the trees T . By Definition 1, choosing a tree T ∈ RPT(S ∪R,C) is equivalent
to choosing sets R1, . . . , Rk, sets C1, . . . , Ck, and trees T1, . . . , Tk such that (R0) Ri = V (Ti) \ C,
(R1) Ti is a RPT over Ci ∪Ri rooted at Ci, (R2) {R1, . . . , Rk} @ (S ∪R) \C, and (R3) C ∩Ci is
a proper subset of C and Ci.

Observe first that (S ∪ R) \ C = R \ C and therefore (R2) is equivalent to choosing sets Ri such
that {R1, . . . , Rk} @ R \ C.

Denote by Si the intersection C ∩ Ci. We show that together (R0) and (R1) are equivalent to
saying that Ti is a RPT over Si ∪ Ri rooted at Ci. Assume first that the conditions are true. By
(R1) it’s sufficient to show that Ci ∪ Ri = Si ∪ Ri. From (R1) it follows that Ci ⊆ V (Ti)
and therefore Ci \ C ⊆ V (Ti) \ C, which by (R0) implies Ci \ C ⊆ Ri. This in turn implies
Ci ∪Ri = (Ci ∩C)∪ (Ci \C)∪Ri = Si ∪Ri. Assume then that Ti is a RPT over Si ∪Ri rooted at
Ci. Condition (R0) holds since V (Ti) \C = (Si ∪Ri) \C = (Si \C) ∪ (Ri \C) = ∅ ∪Ri = Ri.
Condition (R1) holds since Si ⊆ Ci ⊆ V (Ti) = Si ∪Ri and thus Si ∪Ri = Ci ∪Ri.

Finally observe that (R3) is equivalent to first choosing Si ⊂ C and then Ci ⊃ Si. By (R1) it must
also be that Ci ⊆ V (Ti) = Si ∪Ri. Based on these observations, we can now write

f(S,R) = max
S ⊂ C ⊆ S ∪ R

{R1, . . . , Rk} @ R \ C
S1,...,Sk⊂C

∀i:Si⊂Ci⊆Ri∪Si
∀i:Ti is a RPT over Si ∪ Ri rooted at Ci

s(T) .

Next we factorize s(T) using the factorization (1) of the score. In addition, once a root C, a partition
{R1, . . . , Rk}, and separators {S1, . . . , Sk} have been fixed, then each pair (Ci, Ti) can be chosen
independently for different i. Thus, the above maximization can be written as

max
S ⊂ C ⊆ S ∪ R

{R1, . . . , Rk} @ R \ C
S1,...,Sk⊂C

p(C)

k∏
i=1

 1

p(Si)
· max

Si⊂Ci⊆Ri∪Si

Ti∈RPT(Si∪Ri,Ci)

s(Ti)

 .

By applying Definition 2 to the inner maximization the claim follows.

5

3.3 Fast evaluation

The direct evaluation of the recurrence in Lemma 6 would be very inefficient, especially since it
involves maximization over all partitions of the vertex set. In order to evaluate it more efficiently, we
decompose it into multiple recurrences, each of which can take advantage of dynamic programming.

Observe first that we can rewrite the recurrence as

f(S,R) = max
S ⊂ C ⊆ S ∪ R

{R1, . . . , Rk} @ R \ C

p(C)

k∏
i=1

h(C,Ri) , (2)

where
h(C,R) = max

S⊂C
f(S,R)

/
p(S) . (3)

We have simply moved the maximization over Si ⊂ C inside the product and written each factor
using a new function h. Due to how the sets C and Ri are selected, the arguments to h are always
non-empty and disjoint subsets of V . In a similar fashion, we can further rewrite recurrence 2 as

f(S,R) = max
S⊂C⊆S∪R

p(C)g(C,R \ C) , (4)

where we define

g(C,U) = max
{R1,...,Rk}@U

k∏
i=1

h(C,Ri) .

Again, note that C and U are disjoint and C is non-empty. If U = ∅, then g(C,U) = 1. Otherwise

g(C,U) = max
∅6=R⊆U

h(C,R) max
{R2,...,Rk}@U\R

k∏
i=2

h(C,Ri) = max
∅ 6=R⊆U

h(C,R)g(C,U \R) . (5)

Thus, we have split the original recurrence into three simpler recurrences (4,5,3). We now obtain a
straightforward dynamic programming algorithm that evaluates f , g and h using these recurrences
with memoization, and then outputs the score f(∅, V) of an optimal RPT.

3.4 Time and space requirements

We measure the time requirement by the number of basic operations, namely comparisons and
arithmetic operations, executed for pairs of real numbers. Likewise, we measure the space requirement
by the maximum number of real values stored at any point during the execution of the algorithm.
We consider both time and space in the more general setting where the width w ≤ n of the optimal
network is restricted by selecting every node (clique) C in recurrence (4) with the constraint |C| ≤ w.

We prove the following bounds by counting, for each of the three functions, the associated subset
triplets that meet the applicable disjointness, inclusion, and cardinality constraints:

Theorem 7. Let V be a set of size n and w ≤ n. Given the local scores of the subsets of V of size
at most w as input, a maximum-score junction tree over V of width at most w can be found using
6
∑w

i=0

(
n
i

)
3n−i basic operations and having a storage for 3

∑w
i=0

(
n
i

)
2n−i real numbers.

Proof. To bound the number of basic operations needed, we consider the evaluation of each the
functions f , g, and h using the recurrences (4,5,3). Consider first f . Due to memoization, the
algorithm executes at most two basic operations (one comparison and one multiplication) per triplet
(S,R,C), with S and R disjoint, S ⊂ C ⊆ S ∪R, and |C| ≤ w. Subject to these constraints, a set C
of size i can be chosen in

(
n
i

)
ways, the set S ⊂ C in at most 2i ways, and the set R \C in 2n−i ways.

Thus, the number of basic operations needed is at most Nf = 2
∑w

i=0

(
n
i

)
2n−i2i = 2n+1

∑w
i=0

(
n
i

)
.

Similarly, for h the algorithm executes at most two basic operations per triplet (C,R, S), with now C
and R disjoint, |C| ≤ w, and S ⊂ C. A calculation gives the same bound as for f . Finally consider g.
Now the algorithm executes at most two basic operations per triplet (C,U,R), with C and U disjoint,
|C| ≤ w, and ∅ 6= R ⊆ U . A set C of size i can be chosen in

(
n
i

)
ways, and the remaining n − i

elements can be assigned into U and its subset R in 3n−i ways. Thus, the number of basic operations

6

w = 3 w = 4 w = 5 w = 6 w = 1

U NM NO NQ NS NU

N±=

SM±=

N¦=

8 10 12 14 16 18

1s

60s

1h

8 10 12 14 16 18

1s

60s

1h

Figure 2: The running time of Junctor and GOBNILP as a function of the number of vertices for
varying widths w, on sparse (top) and dense (bottom) synthetic instances with 100 (“small”), 1000
(“medium”), and 10,000 (“large”) data samples. The dashed red line indicates the 4-hour timeout or
memout. For GOBNILP shown is the median of the running times on 15 random instances.

needed is at most Ng = 2
∑w

i=0

(
n
i

)
3n−i. Finally, it is sufficient to observe that there is a j such that(

n
i

)
3n−i is larger than

(
n
i

)
2n when i ≤ j, and smaller when i > j. Now because both terms sum up

to the same value 4n when i = 0, . . . , n, the bound Ng is always greater or equal to Nf .

We bound the storage requirement in a similar manner. For each function, the size of the first argument
is at most w and the second argument is disjoint from the first, yielding the claimed bound.

Remark 1. For w = n, the bounds for the number of basic operations and storage requirement in
Theorem 7 become 6 · 4n and 3 · 3n, respectively. When w ≤ n/4, the former bound can be replaced
by 6w

(
n
w

)
3n−w, since

(
n
i

)
3n−i ≤

(
n

i+1

)
3n−i−1 if and only if i ≤ (n− 3)/4.

Remark 2. Memoization requires indexing with pairs of disjoint sets. Representing sets as integers
allows efficient lookups to a two-dimensional array, using O(4n) space. We can achieve O(3n)
space by mapping a pair of sets (A,B) to

∑n
a=1 3

a−1Ia(A,B) where Ia(A,B) is 1 if a ∈ A, 2 if
a ∈ B, and 0 otherwise. Each pair gets a unique index from 0 to 3n − 1 to a compact array. A naı̈ve
evaluation of the index adds an O(n) factor to the running time. This can be improved to constant
amortized time by updating the index incrementally while iterating over sets.

4 Experimental results

We have implemented the presented algorithm in a C++ program Junctor (Junction Trees Optimally
Recursively).2 In the experiments reported below, we compared the performance of Junctor and the
integer linear programming based solver GOBNILP by Bartlett and Cussens [20]. While GOBNILP
has been tailored for finding an optimal Bayesian network, it enables forbidding the so-called
v-structures in the network and, thereby, finding an optimal chordal Markov network, provided that
we use the BDeu score, as we have done, or some other special scoring function [23, 24]. We note
that when forbidding v-structures, the standard score pruning rules [20, 25] are no longer valid.

We first investigated the performance on synthetic data generated from Bayesian networks of varying
size and density. We generated 15 datasets for each combination of the number of vertices n from 8 to
18, maximum indegree k = 4 (sparse) or k = 8 (dense), and the number of samples m equaling 100,
1000, or 10,000, as follows: Along a random vertex ordering, we first drew for each vertex the number
of its parents from the uniform distribution between 0 and k and then the actual parents uniformly
at random from its predecessors in the vertex ordering. Next, we assigned each vertex two possible
states and drew the parameters of the conditional distributions from the uniform distribution. Finally,
from the obtained joint distribution, we drew m independent samples. The input for Junctor and

2Junctor is publicly available at www.cs.helsinki.fi/u/jwkangas/junctor/.

7

