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Abstract

Stochastic variational inference (SVI) lets us scale up Bayesian computation to
massive data. It uses stochastic optimization to fit a variational distribution, fol-
lowing easy-to-compute noisy natural gradients. As with most traditional stochas-
tic optimization methods, SVI takes precautions to use unbiased stochastic gradi-
ents whose expectations are equal to the true gradients. In this paper, we explore
the idea of following biased stochastic gradients in SVI. Our method replaces
the natural gradient with a similarly constructed vector that uses a fixed-window
moving average of some of its previous terms. We will demonstrate the many ad-
vantages of this technique. First, its computational cost is the same as for SVI and
storage requirements only multiply by a constant factor. Second, it enjoys signif-
icant variance reduction over the unbiased estimates, smaller bias than averaged
gradients, and leads to smaller mean-squared error against the full gradient. We
test our method on latent Dirichlet allocation with three large corpora.

1 Introduction

Stochastic variational inference (SVI) lets us scale up Bayesian computation to massive data [1]. SVI
has been applied to many types of models, including topic models [1], probabilistic factorization [2],
statistical network analysis [3, 4], and Gaussian processes [5].

SVI uses stochastic optimization [6] to fit a variational distribution, following easy-to-compute noisy
natural gradients that come from repeatedly subsampling from the large data set. As with most
traditional stochastic optimization methods, SVI takes precautions to use unbiased, noisy gradients
whose expectations are equal to the true gradients. This is necessary for the conditions of [6] to
apply, and guarantees that SVI climbs to a local optimum of the variational objective. Innovations
on SVI, such as subsampling from data non-uniformly [2] or using control variates [7, 8], have
maintained the unbiasedness of the noisy gradient.

In this paper, we explore the idea of following a biased stochastic gradient in SVI. We are inspired
by the recent work in stochastic optimization that uses biased gradients. For example, stochastic
averaged gradients (SAG) iteratively updates only a subset of terms in the full gradient [9]; averaged
gradients (AG) follows the average of the sequence of stochastic gradients [10]. These methods lead
to faster convergence on many problems.

However, SAG and AG are not immediately applicable to SVI. First, SAG requires storing all of the
terms of the gradient. In most applications of SVI there is a term for each data point, and avoiding
such storage is one of the motivations for using the algorithm. Second, the SVI update has a form
where we update the variational parameter with a convex combination of the previous parameter
and a new noisy version of it. This property falls out of the special structure of the gradient of
the variational objective, and has the significant advantage of keeping the parameter in its feasible
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space. (E.g., the parameter may be constrained to be positive or even on the simplex.) Averaged
gradients, as we show below, do not enjoy this property. Thus, we develop a new method to form
biased gradients in SVI.

To understand our method, we must briefly explain the special structure of the SVI stochastic natural
gradient. At any iteration of SVI, we have a current estimate of the variational parameter λi, i.e., the
parameter governing an approximate posterior that we are trying to estimate. First, we sample a data
point wi. Then, we use the current estimate of variational parameters to compute expected sufficient
statistics Ŝi about that data point. (The sufficient statistics Ŝi is a vector of the same dimension as
λi.) Finally, we form the stochastic natural gradient of the variational objective L with this simple
expression:

∇λL = η +NŜi − λi, (1)
where η is a prior from the model and N is an appropriate scaling. This is an unbiased noisy
gradient [11, 1], and we follow it with a step size ρi that decreases across iterations [6]. Because of
its algebraic structure, each step amounts to taking a weighted average,

λi+1 = (1− ρi)λi + ρi(η +NŜi). (2)

Note that this keeps λi in its feasible set.

With these details in mind, we can now describe our method. Our method replaces the natural
gradient in Eq. (1) with a similarly constructed vector that uses a fixed-window moving average
of the previous sufficient statistics. That is, we replace the sufficient statistics with an appropriate
scaled sum,

∑L−1
j=0 Ŝi−j . Note this is different from averaging the gradients, which also involves the

current iteration’s estimate.

We will demonstrate the many advantages of this technique. First, its computational cost is the
same as for SVI and storage requirements only multiply by a constant factor (the window length
L). Second, it enjoys significant variance reduction over the unbiased estimates, smaller bias than
averaged gradients, and leads to smaller mean-squared error against the full gradient. Finally, we
tested our method on latent Dirichlet allocation with three large corpora. We found it leads to faster
convergence and better local optima.

Related work We first discuss the related work from the SVI literature. Both Ref. [8] and Ref. [7]
introduce control variates to reduce the gradient’s variance. The method leads to unbiased gradient
estimates. On the other hand, every few hundred iterations, an entire pass through the data set is
necessary, which makes the performance and expenses of the method depend on the size of the
data set. Ref. [12] develops a method to pre-select documents according to their influence on the
global update. For large data sets, however, it also suffers from high storage requirements. In the
stochastic optimization literature, we have already discussed SAG [9] and AG [10]. Similarly, Ref.
[13] introduces an exponentially fading momentum term. It too suffers from the issues of SAG and
AG, mentioned above.

2 Smoothed stochastic gradients for SVI

Latent Dirichlet Allocation and Variational Inference We start by reviewing stochastic varia-
tional inference for LDA [1, 14], a topic model that will be our running example. We are given a
corpus ofD documents with words w1:D,1:N . We want to inferK hidden topics, defined as multino-
mial distributions over a vocabulary of size V . We define a multinomial parameter β1:V,1:K , termed
the topics. Each document d is associated with a normalized vector of topic weights Θd. Further-
more, each word n in document d has a topic assignment zdn. This is a K−vector of binary entries,
such that zkdn = 1 if word n in document d is assigned to topic k, and zkdn = 0 otherwise.

In the generative process, we first draw the topics from a Dirichlet, βk ∼ Dirichlet(η). For each
document, we draw the topic weights, Θd ∼ Dirichlet(α). Finally, for each word in the document,
we draw an assignment zdn ∼ Multinomial(Θd), and we draw the word from the assigned topic,
wdn ∼ Multinomial(βzdn). The model has the following joint probability distribution:

p(w, β,Θ, z|η, α) =

K∏
k=1

p(βk|η)

D∏
d=1

p(Θd|α)

N∏
n=1

p(zdn|Θd)p(wdn|β1:K , zdn) (3)
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Following [1], the topics β are global parameters, shared among all documents. The assignments z
and topic proportions Θ are local, as they characterize a single document.

In variational inference [15], we approximate the posterior distribution,

p(β,Θ, z|w) =
p(β,Θ, z, w)∑

z

∫
dβdΘ p(β,Θ, z, w)

, (4)

which is intractable to compute. The posterior is approximated by a factorized distribution,

q(β,Θ, z) = q(β|λ)

(
D∏
d=1

N∏
n=1

q(zdn|φdn)

)(
D∏
d=1

q(Θd|γd)

)
(5)

Here, q(β|λ) and q(Θd|γd) are Dirichlet distributions, and q(zdn|φdn) are multinomials. The param-
eters λ, γ and φminimize the Kullback-Leibler (KL) divergence between the variational distribution
and the posterior [16]. As shown in Refs. [1, 17], the objective to maximize is the evidence lower
bound (ELBO),

L(q) = Eq[log p(x, β,Θ, z)]− Eq[log q(β,Θ, z)]. (6)

This is a lower bound on the marginal probability of the observations. It is a sensible objective
function because, up to a constant, it is equal to the negative KL divergence between q and the
posterior. Thus optimizing the ELBO with respect to q is equivalent to minimizing its KL divergence
to the posterior.

In traditional variational methods, we iteratively update the local and global parameters. The local
parameters are updated as described in [1, 17] . They are a function of the global parameters, so
at iteration i the local parameter is φdn(λi). We are interested in the global parameters. They are
updated based on the (expected) sufficient statistics S(λi),

S(λi) =
∑

d∈{1,...,D}

N∑
n=1

φdn(λi) · WT
dn (7)

λi+1 = η + S(λi)

For fixed d and n, the multinomial parameter φdn is K×1. The binary vectorWdn is V×1; it satisfies
Wv
dn = 1 if the word n in document d is v, and else contains only zeros. Hence, S is K×V and

therefore has the same dimension as λ. Alternating updates lead to convergence.

Stochastic variational inference for LDA The computation of the sufficient statistics is ineffi-
cient because it involves a pass through the entire data set. In Stochastic Variational Inference for
LDA [1, 14], it is approximated by stochastically sampling a ”minibatch” Bi ⊂ {1, ..., D} of |Bi|
documents, estimating S on the basis of the minibatch, and scaling the result appropriately,

Ŝ(λi, Bi) =
D

|Bi|
∑
d∈Bi

N∑
n=1

φdn(λi) · WT
dn.

Because it depends on the minibatch, Ŝi = Ŝ(λi, Bi) is now a random variable. We will denote
variables that explicitly depend on the random minibatch Bi at the current time i by circumflexes,
such as ĝ and Ŝ.

In SVI, we update λ by admixing the random estimate of the sufficient statistics to the current value
of λ. This involves a learning rate ρi < 1,

λi+1 = (1− ρi)λi + ρi(η + Ŝ(λi, Bi)) (8)

The case of ρ = 1 and |Bi| = D corresponds to batch variational inference (when sampling without
replacement) . For arbitrary ρ, this update is just stochastic gradient ascent, as a stochastic estimate
of the natural gradient of the ELBO [1] is

ĝ(λi, Bi) = (η − λi) + Ŝ(λi, Bi), (9)

This interpretation opens the world of gradient smoothing techniques. Note that the above stochastic
gradient is unbiased: its expectation value is the full gradient. However, it has a variance. The goal
of this paper will be to reduce this variance at the expense of introducing a bias.

3



Algorithm 1: Smoothed stochastic gradients for Latent Dirichlet Allocation
Input: D documents, minibatch size B, number of stored
sufficient statistics L, learning rate ρt, hyperparameters α, η.
Output: Hidden variational parameters λ, φ, γ.

1 Initialize λ randomly and ĝLi = 0.
2 Initialize empty queue Q = {}.
3 for i = 0 to∞ do
4 Sample minibatch Bi ⊂ {1, . . . , D} uniformly.
5 initialize γ
6 repeat
7 For d ∈ Bi and n ∈ {1, . . . , N} set
8 φkdn ∝ exp(E[log Θdk] + E[log βk,wd

]), k ∈ {1, . . . ,K}
9 γd = α+

∑
n φdn

10 until φdn and γd converge.
11 For each topic k, calculate sufficient statistics for minibatch Bi:
12 Ŝi = D

|Bi|
∑
d∈Bi

∑N
n=1 φdnWT

dn

13 Add new sufficient statistic in front of queue Q:
14 Q← {Ŝi}+Q
15 Remove last element when length L has been reached:
16 if length(Q) > L then
17 Q← Q− {Ŝi−L}
18 end
19 Update λ, using stored sufficient statistics:
20 ŜLi ← ŜLi−1 + (Ŝi − Ŝi−L)/L

21 ĝLi ← (η − λi) + ŜLi
22 λt+1 = λt + ρt ĝ

L
t .

23 end

Smoothed stochastic gradients for SVI Noisy stochastic gradients can slow down the conver-
gence of SVI or lead to convergence to bad local optima. Hence, we propose a smoothing scheme
to reduce the variance of the noisy natural gradient. To this end, we average the sufficient statistics
over the past L iterations. Here is a sketch:

1. Uniformly sample a minibatch Bi ⊂ {1, . . . , D} of documents. Compute the local varia-
tional parameters φ from a given λi.

2. Compute the sufficient statistics Ŝi = Ŝ(φ(λi), Bi).

3. Store Ŝi, along with the L most recent sufficient statistics. Compute ŜLi = 1
L

∑L−1
j=0 Ŝi−j

as their mean.
4. Compute the smoothed stochastic gradient according to

ĝLi = (η − λi) + ŜLi (10)

5. Use the smoothed stochastic gradient to calculate λi+1. Repeat.

Details are in Algorithm 1. We now explore its properties. First, note that smoothing the sufficient
statistics comes at almost no extra computational costs. In fact, the mean of the stored sufficient
statistics does not explicitly have to be computed, but rather amounts to the update

ŜLi ← ŜLi−1 + (Ŝi − Ŝi−L)/L, (11)

after which Ŝi−L is deleted. Storing the sufficient statistics can be expensive for large values of L:
In the context of LDA involving the typical parameters K = 102 and V = 104, using L = 102

amounts to storing 108 64-bit floats which is in the Gigabyte range.

Note that when L = 1 we obtain stochastic variational inference (SVI) in its basic form. This
includes deterministic variational inference for L = 1, B = D in the case of sampling without
replacement within the minibatch.

Biased gradients Let us now investigate the algorithm theoretically. Note that the only noisy part
in the stochastic gradient in Eq. (9) is the sufficient statistics. Averaging over L stochastic sufficient
statistics thus promises to reduce the noise in the gradient. We are interested in the effect of the
additional parameter L.
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When we average over the L most recent sufficient statistics, we introduce a bias. As the variational
parameters change during each iteration, the averaged sufficient statistics deviate in expectation
from its current value. This induces biased gradients. In a nutshell, large values of L will reduce the
variance but increase the bias.

To better understand this tradeoff, we need to introduce some notation. We defined the stochastic
gradient ĝi = ĝ(λi, Bi) in Eq. (9) and refer to gi = EBi

[ĝ(λi, Bi)] as the full gradient (FG). We also
defined the smoothed stochastic gradient ĝiL in Eq. (10). Now, we need to introduce an auxiliary
variable, gLi := (η − λi) + 1

L

∑L−1
j=0 Si−j . This is the time-averaged full gradient. It involves

the full sufficient statistics Si = S(λi) evaluated along the sequence λ1, λ2,... generated by our
algorithm.

We can expand the smoothed stochastic gradient into three terms:

ĝLi = gi︸︷︷︸
FG

+ (gLi − gi)︸ ︷︷ ︸
bias

+ (ĝLi − gLi )︸ ︷︷ ︸
noise

(12)

This involves the full gradient (FG), a bias term and a stochastic noise term. We want to minimize
the statistical error between the full gradient and the smoothed gradient by an optimal choice of L.
We will show this the optimal choice is determined by a tradeoff between variance and bias.

For the following analysis, we need to compute expectation values with respect to realizations of
our algorithm, which is a stochastic process that generates a sequence of λi’s. Those expectation
values are denoted by E[·]. Notably, not only the minibatches Bi are random variables under this
expectation, but also the entire sequences λ1, λ2, ... . Therefore, one needs to keep in mind that even
the full gradients gi = g(λi) are random variables and can be studied under this expectation.

We find that the mean squared error of the smoothed stochastic gradient dominantly decomposes
into a mean squared bias and a noise term:

E[(ĝLi − gi)2] ≈ E[(ĝLi − gLi )2]︸ ︷︷ ︸
variance

+ E[(gLi − gi)2]︸ ︷︷ ︸
mean squared bias

(13)

To see this, consider the mean squared error of the smoothed stochastic gradient with respect to the
full gradient, E[(ĝLi − gi)2], adding and subtracting gLi :

E
[
(ĝLi − gLi + gLi − gi)2

]
= E

[
(ĝLi − gLi )2

]
+ 2E

[
(ĝLi − gLi )(gLi − gi)

]
+ E

[
(gLi − gi)2

]
.

We encounter a cross-term, which we argue to be negligible. In defining ∆Ŝi = (Ŝi − Si) we find
that (ĝLi − gLi ) = 1

L

∑L−1
j=0 ∆Si−j . Therefore,

E
[
(ĝLi − gLi )(gLi − gi)

]
=

1

L

L−1∑
j=0

E
[
∆Ŝi−j(g

L
i − gi)

]
.

The fluctuations of the sufficient statistics ∆Ŝi is a random variable with mean zero, and the ran-
domness of (gLi −gi) enters only via λi. One can assume a very small statistical correlation between

those two terms, E
[
∆Ŝi−j(g

L
i − gi)

]
≈ E

[
∆Ŝi−j

]
E
[
(gLi − gi)

]
= 0. Therefore, the cross-term

can be expected to be negligible. We confirmed this fact empirically in our numerical experiments:
the top row of Fig. 1 shows that the sum of squared bias and variance is barely distinguishable from
the squared error.

By construction, all bias comes from the sufficient statistics:

E[(gLi − gi)2] = E
[(

1
L

∑L−1
j=0 (Si−j − Si)

)2]
. (14)

At this point, little can be said in general about the bias term, apart from the fact that it should shrink
with the learning rate. We will explore it empirically in the next section. We now consider the
variance term:

E[(ĝLi − gLi )2] = E
[(

1
L

∑L−1
j=0 ∆Ŝi−j

)2]
=

1

L2

L−1∑
j=0

E
[
(∆Ŝi−j)

2
]

=
1

L2

L−1∑
j=0

E[(ĝi−j − gi−j)2].
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Figure 1: Empirical test of the variance-bias tradeoff on 2,000 abstracts from the Arxiv repository
(ρ = 0.01, B = 300). Top row. For fixed L = 30 (left), L = 100 (middle), and L = 300
(right), we compare the squared bias, variance, variance+bias and the squared error as a function
of iterations. Depending on L, the variance or the bias give the dominant contribution to the error.
Bottom row. Squared bias (left), variance (middle) and squared error (right) for different values of
L. Intermediate values of L lead to the smallest squared error and hence to the best tradeoff between
small variance and small bias.

This can be reformulated as var(ĝLi ) = 1
L2

∑L−1
j=0 var(ĝi−j). Assuming that the variance changes

little during those L successive updates, we can approximate var(ĝi−j) ≈ var(ĝi), which yields

var(ĝLi ) ≈ 1

L
var(ĝi). (15)

The smoothed gradient has therefore a variance that is approximately L times smaller than the
variance of the original stochastic gradient.

Bias-variance tradeoff To understand and illustrate the effect of L in our optimization problem,
we used a small data set of 2000 abstracts from the Arxiv repository. This allowed us to compute
the full sufficient statistics and the full gradient for reference. More details on the data set and the
corresponding parameters will be given below.

We computed squared bias (SB), variance (VAR) and squared error (SE) according to Eq. (13) for a
single stochastic optimization run. More explicitly,

SBi =

K∑
k=1

V∑
v=1

(
gLi − gi

)2
kv
,VARi =

K∑
k=1

V∑
v=1

(
ĝLi − gLi

)2
kv
,SEi =

K∑
k=1

V∑
v=1

(
ĝLi − gi

)2
kv
. (16)

In Fig. 1, we plot those quantities as a function of iteration steps (time). As argued before, we arrive
at a drastic variance reduction (bottom, middle) when choosing large values of L.

In contrast, the squared bias (bottom, left) typically increases with L. The bias shows a complex
time-evolution as it maintains memory of L previous steps. For example, the kinks in the bias curves
(bottom, left) occur at times 3, 10, 30, 100 and 300, i.e. they correspond to the values of L. Those are
the times from which on the smoothed gradient looses memory of its initial state, typically carrying
a large bias. The variances become approximately stationary at iteration L (bottom, middle). Those
are the times where the initialization process ends and the queue Q in Algorithm 1 has reached its
maximal length L. The squared error (bottom, right) is to a good approximation just the sum of
squared bias and variance. This is also shown in the top panel of Fig. 1.
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Due to the long-time memory of the smoothed gradients, one can associate some ”inertia” or ”mo-
mentum” to each value of L. The larger L, the smaller the variance and the larger the inertia. In
a non-convex optimization setup with many local optima as in our case, too much inertia can be
harmful. This effect can be seen for the L = 100 and L = 300 runs in Fig. 1 (bottom), where the
mean squared bias and error curves bend upwards at long times. Think of a marble rolling in a wavy
landscape: with too much momentum it runs the danger of passing through a good optimum and
eventually getting trapped in a bad local optimum. This picture suggests that the optimal value of
L depends on the ”ruggedness” of the potential landscape of the optimization problem at hand. Our
empirical study suggest that choosing L between 10 and 100 produces the smallest mean squared
error.

Aside: connection to gradient averaging Our algorithm was inspired by various gradient aver-
aging schemes. However, we cannot easily used averaged gradients in SVI. To see the drawbacks of
gradient averaging, let us consider L stochastic gradients ĝi, ĝi−1, ĝi−2, ..., ĝi−L+1 and replace

ĝi −→ 1
L

∑L−1
j=0 ĝi−j . (17)

One arrives at the following parameter update for λi:

λi+1 = (1− ρi)λi + ρi

η +
1

L

L−1∑
j=0

Ŝi−j −
1

L

L−1∑
j=0

(λi−j − λi)

 . (18)

This update can lead to the violation of optimization constraints, namely to a negative variational
parameter λ. Note that for L = 1 (the case of SVI), the third term is zero, guaranteeing positivity of
the update. This is no longer guaranteed for L > 1, and the gradient updates will eventually become
negative. We found this in practice. Furthermore, we find that there is an extra contribution to the
bias compared to Eq. (14),

E[(gLi − gi)2] = E
[(

1
L

∑L−1
j=0 (λi − λi−j) + 1

L

∑L−1
j=0 (Si−j − Si)

)2]
. (19)

Hence, the averaged gradient carries an additional bias in λ - it is the same term that may violate
optimization constraints. In contrast, the variance of the averaged gradient is the same as the variance
of the smoothed gradient. Compared to gradient averaging, the smoothed gradient has a smaller bias
while profiting from the same variance reduction.

3 Empirical study

We tested SVI for LDA, using the smoothed stochastic gradients, on three large corpora:

• 882K scientific abstracts from the Arxiv repository, using a vocabulary of 14K words.
• 1.7M articles from the New York Times, using a vocabulary of 8K words.
• 3.6M articles from Wikipedia, using a vocabulary of 7.7K words.

We set the minibatch size to B = 300 and furthermore set the number of topics to K = 100, and
the hyper-parameters α = η = 0.5. We fixed the learning rate to ρ = 10−3. We also compared our
results to a decreasing learning rate and found the same behavior.

For a quantitative test of model fitness, we evaluate the predictive probability over the vocabulary [1].
To this end, we separate a test set from the training set. This test set is furthermore split into two
parts: half of it is used to obtain the local variational parameters (i.e. the topic proportions by fitting
LDA with the fixed global parameters λ. The second part is used to compute the likelihoods of the
contained words:

p(wnew|wold, D) ≈
∫ (∑K

k=1 Θkβk,wnew

)
q(Θ)q(β)dΘdβ = Eq[θk]Eq[βk,wnew

]. (20)

We show the predictive probabilities as a function of effective passes through the data set in Fig. 2
for the New York Times, Arxiv, and Wikipedia corpus, respectively. Effective passes through the
data set are defined as (minibatch size * iterations / size of corpus). Within each plot, we compare
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Figure 2: Per-word predictive probabilitiy as a function of the effective number of passes through
the data (minibatch size * iterations / size of corpus). We compare results for the New York Times,
Arxiv, and Wikipedia data sets. Each plot shows data for different values of L. We used a constant
learning rate of 10−3, and set a time budget of 24 hours. Highest likelihoods are obtained for L
between 10 and 100, after which strong bias effects set in.

different numbers of stored sufficient statistics, L ∈ {1, 10, 100, 1000, 10000,∞}. The last value
of L = ∞ corresponds to a version of the algorithm where we average over all previous sufficient
statistics, which is related to averaged gradients (AG), but which has a bias too large to compete
with small and finite values of L. The maximal values of 30, 5 and 6 effective passes through the
Arxiv, New York Times and Wikipedia data sets, respectively, approximately correspond to a run
time of 24 hours, which we set as a hard cutoff in our study.

We obtain the highest held-out likelihoods for intermediate values of L. E.g., averaging only over
10 subsequent sufficient statistics results in much faster convergence and higher likelihoods at very
little extra storage costs. As we discussed above, we attribute this fact to the best tradeoff between
variance and bias.

4 Discussion and Conclusions

SVI scales up Bayesian inference, but suffers from noisy stochastic gradients. To reduce the mean
squared error relative to the full gradient, we averaged the sufficient statistics of SVI successively
over L iteration steps. The resulting smoothed gradient is biased, however, and the performance of
the method is governed by the competition between bias and variance. We argued theoretically and
showed empirically that intermediate values of the number of stored sufficient statistics L give the
highest held-out likelihoods.

Proving convergence for our algorithm is still an open problem, which is non-trivial especially be-
cause the variational objective is non-convex. To guarantee convergence, however, we can simply
phase out our algorithm and reduce the number of stored gradients to one as we get close to conver-
gence. At this point, we recover SVI.
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