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Abstract

To keep up with the Big Data challenge, parallelized algorithms based on dual de-
composition have been proposed to perform inference in Markov random fields.
Despite this parallelization, current algorithms struggle when the energy has high
order terms and the graph is densely connected. In this paper we propose a parti-
tioning strategy followed by a message passing algorithm which is able to exploit
pre-computations. It only updates the high-order factors when passing messages
across machines. We demonstrate the effectiveness of our approach on the task of
joint layout and semantic segmentation estimation from single images, and show
that our approach is orders of magnitude faster than current methods.

1 Introduction

Graphical models are a very useful tool to capture the dependencies between the variables of inter-
est. In domains such as computer vision, natural language processing and computational biology
they have been very widely used to solve problems such as semantic segmentation [37], depth re-
construction [21], dependency parsing [4, 25] and protein folding [36].

Despite decades of research, finding the maximum a-posteriori (MAP) assignment or the minimi-
mum energy configuration remains an open problem, as it is NP-hard in general. Notable exceptions
are specialized solvers such as graph-cuts [7, 3] and dynamic programming [19, 1], which retrieve
the global optima for sub-modular energies and tree-shaped graphs. Algorithms based on message
passing [18, 9], a series of graph cut moves [16] or branch-and-bound techniques [5] are common
choices to perform approximate inference in the more general case. A task closely related to MAP
inference but typically harder is computation of the probability for a given configuration. It requires
computing the partition function, which is typically done via message passing [18], sampling or by
repeatedly using MAP inference to solve tasks perturbed via Gumbel distributions [8].

Of particular difficulty is the case where the involved potentials depend on more than two variables,
i.e., they are high-order, or the graph is densely connected. Several techniques have been developed
to allow current algorithms to handle high-order potentials, but they are typically restricted to poten-
tials of a specific form, e.g., a function of the cardinality [17] or piece-wise linear potentials [11, 10].
For densely connected graphs with Gaussian potentials efficient inference methods based on filtering
have been proposed [14, 33].

Alternating minimization approaches, which iterate between solving for subsets of variables have
also been studied [32, 38, 29]. However, most approaches loose their guarantees since related sub-
problems are solved independently. Another method to improve computational efficiency is to
divide the model into smaller tasks, which are solved in parallel using dual decomposition tech-
niques [13, 20, 22]. Contrasting alternating minimization, convergence properties are ensured.
However, these techniques are computationally expensive despite the division of computation, since
global and dense interactions are still present.
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In this work we show that for many graphical models it is possible to devise a partitioning strat-
egy followed by a message passing algorithm such that efficiency can be improved significantly.
In particular, our approach adds additional terms to the energy function (i.e., regions to the Hasse
diagram) such that the high-order factors can be pre-computed and remain constant during local
message passing within each machine. As a consequence, high-order factors are only accessed once
before sending messages across machines. This contrasts tightening approaches [27, 28, 2, 26],
where additional regions are added to better approximate the marginal polytope at the cost of ad-
ditional computations, while we are mainly interested in computational efficiency. In contrast to
re-scheduling strategies [6, 30, 2], our rescheduling is fixed and does not require additional compu-
tation.

Our experimental evaluations show that state-of-the-art techniques [9, 22] have difficulties optimiz-
ing energy functions that correspond to densely connected graphs with high-order factors. In con-
trast our approach is able to achieve more than one order of magnitude speed-ups while retrieving
the same solution in the complex task of jointly estimating 3D room layout and image segmentation
from a single RGB-D image.

2 Background: Dual Decomposition for Message Passing

We start by reviewing dual-decomposition approaches for inference in graphical models with high-
order factors. To this end, we consider distributions defined over a discrete domain S =

∏N
i=1 Si,

which is composed of a product of N smaller discrete spaces Si = {1, . . . , |Si|}. We model our dis-
tribution to depend log-linearly on a scoring function θ(s) defined over the aforementioned discrete
product space S, i.e., p(s) = 1

Z exp θ(s), with Z the partition function. Given the scoring function
θ(s) of a configuration s, it is unfortunately generally #P-complete to compute its probability since
the partition function Z is required. Its logarithm equals the following variational program [12]:

logZ = max
p∈∆

∑
s

p(s)θ(s) +H(p), (1)

where H denotes the entropy and ∆ indicates the probability simplex.

The variational program in Eq. (1) is challenging as it operates on the exponentially sized domain
S. However, we can make use of the fact that for many relevant applications the scoring function
θ(s) is additively composed of local terms, i.e., θ(s) =

∑
r∈R θr(sr). These local scoring functions

θr depend on a subset of variables sr = (si)i∈r, defined on a domain Sr ⊆ S, which is specified by
the restriction often referred to as region r ⊆ {1, . . . , N}, i.e., Sr =

∏
i∈r Si. We refer to R as the

set of all restriction required to compute the scoring function θ.

Locality of the scoring function allows to equivalently rewrite the expected score via
∑
s p(s)θ(s) =∑

r,sr
pr(sr)θr(sr) by employing marginals pr(sr) =

∑
s\sr p(s). Unfortunately an exact de-

composition of the entropy H(p) using marginals is not possible. Instead, the entropy is typically
approximated by a weighted sum of local entropies H(p) ≈

∑
r crH(pr), with cr the counting

numbers. The task remains intractable despite the entropy approximation since the marginals pr(sr)
are required to arise from a valid joint distribution p(s). However, if we require the marginals to be
consistent only locally, we obtain a tractable approximation [34]. We thus introduce local beliefs
br(sr) to denote the approximation, not to be confused with the true marginals pr. The beliefs are
required to fulfill local marginalization constraints, i.e.,

∑
sp\sr bp(sp) = br(sr) ∀r, sr, p ∈ P (r),

where the set P (r) subsumes the set of all parents of region r for which we want marginalization to
hold.

Putting all this together, we obtain the following approximation:

max
b

∑
r,sr

br(sr)θr(sr) +
∑
r

crH(br)

s.t. ∀r br ∈ C =

{
br :

br ∈ ∆∑
sp\sr bp(sp) = br(sr) ∀sr, p ∈ P (r). (2)

The computation and memory requirements can be too demanding when dealing with large graph-
ical models. To address this issue, [13, 22] showed that this task can be distributed onto multiple
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Algorithm: Distributed Message Passing Inference
Let a = 1/|M(r)| and repeat until convergence
1. For every κ in parallel: iterate T times over r ∈ R(κ):

∀p ∈ P (r), sr

µp→r(sr) = εĉp ln
∑
sp\sr

exp

θ̂p(sp)−
∑

p′∈P (p)

λp→p′(sp) +
∑

r′∈C(p)∩κ\r
λr′→p(sr′) + νκ→p(sp)

εĉp
(3)

λr→p(sr) ∝
ĉp

ĉr+
∑

p∈P (r)

ĉp

θ̂r(sr) +
∑

c∈C(r)∩κ

λc→r(sc) + νκ→r(sr) +
∑

p∈P (r)

µp→r(sr)

− µp→r(sr)(4)

2. Exchange information by iterating once over r ∈ G ∀κ ∈M(r)

νκ→r(sr) = a
∑

c∈C(r)

λc→r(sc)−
∑

c∈C(r)∩κ

λc→r(sc) +
∑

p∈P (r)

λr→p(sr)− a
∑

κ∈M(r),p∈P (r)

λr→p(sr) (5)

Figure 1: A block-coordinate descent algorithm for the distributed inference task.

computers κ by employing dual decomposition techniques. More specifically, the task is partitioned
into multiple independent tasks with constraints at the boundary ensuring consistency of the parts
upon convergence. Hence, an additional constraint is added to make sure that all beliefs bκr that
are assigned to multiple computers, i.e., those at the boundary of the parts, are consistent upon
convergence and equal a single region belief br. The distributed program is then:

max
br,bκr∈∆

∑
κ,r,sr

bκr (sr)θ̂r(sr) +
∑
κ,r

ĉrH(bκr )

s.t.
∀κ, r ∈ Rκ, sr, p ∈ P (r)

∑
sp\sr

bκp(sp) = bκr (sr)

∀κ, r ∈ Rκ, sr bκr (sr) = br(sr),

where Rκ refers to regions on comptuer κ. We uniformly distributed the scores θr(sr) and the
counting numbers cr of a region r to all overlapping machines. Thus θ̂r = θr/|M(r)| and ĉr =
cr/|M(r)| with M(r) the set of machines that are assigned to region r.

Note that this program operates on the regions defined by the energy decomposition. To derive an
efficient algorithm making use of the structure incorporated in the constraints we follow [22] and
change to the dual domain. For the marginalization constraints we introduce Lagrange multipliers
λκr→p(sr) for every computer κ, all regions r ∈ Rκ assigned to that computer, all its states sr
and all its parents p. For the consistency constraint we introduce Lagrange multipliers νκ→r(sr)
for all computers, regions and states. The arrows indicate that the Lagrange multipliers can be
interpreted as messages sent between different nodes in a Hasse diagram with nodes corresponding
to the regions.

The resulting distributed inference algorithm [22] is summarized in Fig. 1. It consists of two parts,
the first of which is a standard message passing on the Hasse-diagram defined locally on each com-
puter κ. The second operation interrupts message passing occasionally to exchange information
between computers. This second task of exchanging messages is often visualized on a graph G with
nodes corresponding to computers and additional vertices denoting shared regions.

Fig. 2(a) depicts a region graph with four unary regions and two high-order ones, i.e., R =
{{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 3, 4}}. We partition this region graph onto two computers
κ1, κ2 as indicated via the dashed rectangles. The graph G containing as nodes both computers
and the shared region is provided as well. The connections between all regions are labeled with the
corresponding message, i.e., λ, µ and ν. We emphasize that the consistency messages ν are only
modified when sending information between computers κ. Investigating the provided example in
Fig. 2(a) more carefully we observe that the computation of µ as defined in Eq. (3) in Fig. 1 in-
volves summing over the state-space of the third-order region {1, 2, 3} and the fourth-order region
{1, 2, 3, 4}. The presence of those high-order regions make dual decomposition approaches [22]
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α = {1, 2, 3} β = {1, 2, 3, 4} α = {1, 2, 3} β = {1, 2, 3, 4}

{1} {2} {3} {4}

1 αλ → 1αµ →

1 βλ →

1βµ → 2 αλ →

2αµ →

2 βλ → 2βµ → 3 αλ → 3αµ → 4 βλ → 4βµ →

3 βλ →

3βµ →

κ1 2κ

α = {1, 2, 3} β = {1, 2, 3, 4}

1κ βυ →2κ αυ →

2κ βυ →1κ αυ →

(a)

α = {1, 2, 3} β = {1, 2, 3, 4} α = {1, 2, 3} β = {1, 2, 3, 4}

σ = {1, 2} π = {3, 4}

{1} {2} {3} {4}κ1 2κ

1 σλ →

1σµ → 2 σλ →

2σµ → 3 πλ →

3πµ → 4 πλ →

4πµ →

σ αλ →

α σµ → σ βλ →

β σµ →

3 αλ → 3αµ →

π βλ →

β πµ →

α = {1, 2, 3} β = {1, 2, 3, 4}

1κ βυ →2κ αυ →

2κ βυ →1κ αυ →

(b)
Figure 2: Standard distributed message passing operating on an inference task partitioned to two
computers (left) is compared to the proposed approach (right) where newly introduced regions (yel-
low) ensure constant messages µ from the high-order regions.

impractical. In the next section we show how message passing algorithms can become orders of
magnitude faster when adding additional regions.

3 Efficient Message Passing for High-order Models

The distributed message passing procedure described in the previous section involves summations
over large state-spaces when computing the messages µ. In this section we derive an approach
that can significantly reduce the computation by adding additional regions and performing message-
passing with a specific message scheduling. Our key observation is that computation can be greatly
reduced if the high-order regions are singly-connected since their outgoing message µ remains con-
stant. Generally, singly-connected high-order regions do not occur in graphical models. However, in
many cases we can use dual decomposition to distribute the computation in a way that the high-order
regions become singly-connected if we introduce additional intermediate regions located between
the high-order regions and the low-order ones (e.g., unary regions).

At first sight, adding regions increases computational complexity since we have to iterate over ad-
ditional terms. However, we add regions only if they result in constant messages from regions with
even larger state space. By pre-computing those constant messages rather than re-evaluating them at
every iteration, we hence decrease computation time despite augmenting the graph with additional
regions, i.e., additional marginal beliefs br.

Specifically, we observe that there are no marginalization constraints for the singly-connected high-
order regions, subsumed in the set Hκ = {r ∈ R̂κ : P (r) = ∅, |C(r)| = 1}, since their set
of parents is empty. An important observation made precise in Claim 1 is that the corresponding
messages µ are constant for high-order regions unless νκ→r changes. Therefore we can improve the
message passing algorithm discussed in the previous section by introducing additional regions to
increase the size of the set |Hκ| as much as possible while not changing the cost function. The latter
is ensured by requiring the additional counting numbers and potentials to equal zero. However, we
note that the program will change since the constraint set is augmented.

More formally, let R̂κ be the set of all regions, i.e., the regionsRκ of the original task on computer
κ in addition to the newly added regions r̂ ∈ R̂κ \Rκ. LetHκ = {r ∈ R̂κ : P (r) = ∅, |C(r)| = 1}
be the set of high-order regions on computer κ that are singly connected and have no parent. Further,
let its complementHκ = R̂κ \ Hκ denote all remaining regions. The inference task is given by

max
br,bκr∈∆

∑
κ,r,sr

bκr (sr)θ̂r(sr) +
∑
κ,r

ĉrH(bκr )

s.t.
∀κ, r ∈ Hκ, sr, p ∈ P (r)

∑
sp\sr

bκp(sp) = bκr (sr)

∀κ, r ∈ R̂κ, sr bκr (sr) = br(sr).
(9)

Even though we set θr(sr) ≡ 0 for all states sr, and ĉr = 0 for all newly added regions r ∈ R̂κ\Rκ,
the inference task is not identical to the original problem since the constraint set is not the same. Note
that new regions introduce new marginalization constraints. Next we show that messages leaving
singly-connected high-order regions are constant.
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Algorithm: Message Passing for Large Scale Graphical Models with High Order Potentials
Let a = 1/|M(r)| and repeat until convergence
1. For every κ in parallel: Update singly-connected regions p ∈ Hκ: let r = C(p) ∀sr

µp→r(sr) = εĉp ln
∑
sp\sr

exp

θ̂p(sp)−
∑

p′∈P (p)

λp→p′(sp) +
∑

r′∈C(p)∩κ\r
λr′→p(sr′) + νκ→p(sp)

εĉp

2. For every κ in parallel: iterate T times over r ∈ R̂κ:

∀p ∈ P (r) \ Hκ, sr

µp→r(sr) = εĉp ln
∑
sp\sr

exp

θ̂p(sp)−
∑

p′∈P (p)

λp→p′(sp) +
∑

r′∈C(p)∩κ\r
λr′→p(sr′) + νκ→p(sp)

εĉp
(6)

∀p ∈ P (r), sr

λr→p(sr) ∝
ĉp

ĉr+
∑

p∈P (r)

ĉp

θ̂r(sr) +
∑

c∈C(r)∩κ

λc→r(sc) + νκ→r(sr) +
∑

p∈P (r)

µp→r(sr)

− µp→r(sr)(7)

3. Exchange information by iterating once over r ∈ G ∀κ ∈M(r)

νκ→r(sr) = a
∑

c∈C(r)

λc→r(sc)−
∑

c∈C(r)∩κ

λc→r(sc) +
∑

p∈P (r)

λr→p(sr)− a
∑

κ∈M(r),p∈P (r)

λr→p(sr) (8)

Figure 3: A block-coordinate descent algorithm for the distributed inference task.

Claim 1. During message passing updates defined in Fig. 1 the multiplier µp→r(sr) is constant for
singly-connected high-order regions p.

Proof: More carefully investigating Eq. (3) which defines µ, it follows that
∑
p′∈P (p) λp→p′(sp) =

0 because P (p) = ∅ since p is assumed singly-connected. For the same reason we obtain∑
r′∈C(p)∩κ\r λr′→p(sr′) = 0 because r′ ∈ C(p) ∩ κ \ r = ∅ and νκ→p(sp) is constant upon

each exchange of information. Therefore, µp→r(sr) is constant irrespective of all other messages
and can be pre-computed upon exchange of information. �

We can thus pre-compute the constant messages before performing message passing. Our approach
is summarized in Fig. 3. We now provide its convergence properties in the following claim.

Claim 2. The algorithm outlined in Fig. 3 is guaranteed to converge to the global optimum of the
program given in Eq. (9) for εcr > 0 ∀r and is guaranteed to converge in case εcr ≥ 0 ∀r.

Proof: The message passing algorithm is derived as a block-coordinate descent algorithm in the
dual domain. Hence it inherits the properties of block-coordinate descent algorithms [31] which are
guaranteed to converge to a single global optimum in case of strict concavity (εcr > 0 ∀r) and which
are guaranteed to converge in case of concavity only (εcr ≥ 0 ∀r), which proves the claim. �

We note that Claim 1 nicely illustrates the benefits of working with region graphs rather than factor
graphs. A bi-partite factor graph contains variable nodes connected to possibly high-order factors.
Assume that we distributed the task at hand such that every high-order region of size larger than two
is connected to at most two local variables. By adding a pairwise region in between the original
high-order factor node and the variable nodes we are able to reduce computational complexity since
the high-order factors are now singly connected. Therefore, we can guarantee that the complexity of
the local message-passing steps run in each machine reduces from the state-space size of the largest
factor to the size of the largest newly introduced region in each computer. This is summarized in the
following claim.

Claim 3. Assume we are given a high-order factor-graph representation of a graphical model. By
distributing the model onto multiple computers and by introducing additional regions we reduce the
complexity of the message passing iterations on every computer generally dominated by the state-

5



(a) Layout parameterization.
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(c) Joint model.
Figure 4: Parameterization of the layout task is visualized in (a). Compatibility of a superpixel
labeling with a wall parameterization using third-order functions is outlined in (b) and the graphical
model for the joint layout-segmentation task is depicted in (c).

rel. duality gap 1 0.1 0.01
Ours [s] 0.78 5.92 51.59
cBP [s] 31.60 986.54 1736.6

dcBP [s] 19.48 1042.8 1772.6

rel. duality gap 1 0.1 0.01
Ours [s] 15.58 448.26 1150.1
cBP [s] 411.81 4357.9 4479.9

dcBP [s] 451.71 4506.6 4585.3
ε = 0 ε = 1

Table 1: Average time to achieve the specified relative duality gap for ε = 0 (left) and ε = 1 (right).

space size of the largest region smax = maxr∈Rκ
|Sr| from O(smax) to O(s′max) with s′max =

maxr∈R̂κ
|Sr∩Hκ

|.

Proof: The complexity of standard message passing on a region graph is linear on the largest state-
space region, i.e., O(smax). Since some operations can be pre-computed as per Claim 1 we em-
phasize that the largest newly introduced region on computer κ is of state-space size s′max which
concludes the proof. �

Claim 3 indicates that distributing computation in addition to message rescheduling is a powerful
tool to cope with high-order potentials. To gain some insight, we illustrate our idea with a specific
example. Suppose we distribute the inference computation on two computers κ1, κ2 as shown in
Fig. 2(a). We compare it to a task on R̂ regions, i.e., we introduce additional regions r̂ ∈ R̂\R. The
messages required in the augmented task are visualized in Fig. 2(b). Each computer (box highlighted
with dashed lines) is assigned a task specified by the contained region graph. As before we also
visualize the messages ν occasionally sent between the computers in a graph containing as nodes
the shared factors and the computers (boxes drawn with dashed lines). The algorithm proceeds by
passing messages λ, µ on each computer independently for T rounds. Afterwards messages ν are
exchanged between computers. Importantly, we note that messages for singly-connected high-order
regions within dashed boxes are only required to be computed once upon exchanging message ν.
This is the case for all high-order regions in Fig. 2(b) and for no high-order region in Fig. 2(a),
highlighting the obtained computational benefits.

4 Experimental Evaluation

We demonstrate the effectiveness of our approach in the task of jointly estimating the layout and
semantic labels of indoor scenes from a single RGB-D image. We use the dataset of [38], which is
a subset of the NYU v2 dataset [24]. Following [38], we utilize 202 images for training and 101 for
testing. Given the vanishing points (points where parallel lines meet at infinity), the layout task can
be formulated with four random variables s1, . . . , s4, each of which corresponds to angles for rays
originating from two distinct vanishing points [15]. We discretize each ray into |Si| = 25 states. To
define the segmentation task, we partition each image into super pixels. We then define a random
variable with six states for each super pixel si ∈ Si = {left, front, right, ceiling,floor, clutter} with
i > 4. We refer the reader to Fig. 4(a) and Fig. 4(b) for an illustration of the parameterization of the
problem. The graphical model for the joint problem is depicted in Fig. 4(c).

The score of the joint model is given by a sum of scores

θ(s) = θlay(s1, . . . , s4) + θlabel(s5, . . . , sM+4) + θcomp(s),

where θlay is defined as the sum of scores over the layout faces, which can be decomposed into a
sum of pairwise functions using integral geometry [23]. The labeling score θlabel contains unary
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Figure 5: Average normalized primal/dual and factor agreement for ε = 1 and ε = 0.

potentials and pairwise regularization between neighboring superpixels. The third function, θcomp,
couples the two tasks and encourages the layout and the segmentation to agree in their labels, e.g., a
superpixel on the left wall of the layout is more likely to be assigned the left-wall or the object label.
The compatibility score decomposes into a sum of fifth-order scores, one for each superpixel, i.e.,
θcomp(s) =

∑
i>4 θcomp,i(s1, . . . , s4, si). Using integral geometry [23], we can further decompose

each superpixel score θcomp,i into a sum of third-order energies. As illustrated in Fig. 4(c), every
superpixel variable si, i > 4 is therefore linked to 4-choose-2 third order functions of state-space
size 6 · 252. These functions measure the overlap of each superpixel with a region specified by two
layout ray angles si, sj with i, j ∈ {1, . . . , 4}, i 6= j. This is illustrated in Fig. 4(b) for the area
highlighted in purple and the blue region defined by s2 and s3. Since a typical image has around
250 superpixels, there are approximately 1000 third-order factors.

Following Claim 3 we recognize that the third-order functions are connected to at most two vari-
ables if we distribute the inference such that the layout task is assigned to one computer while the
segmentation task is divided onto other machines. Importantly, this corresponds to a roughly equal
split of the problem when using our approach, since all tasks are pairwise and the state-space of
the layout task is higher than the one of the semantic-segmentation. Despite the third-order regions
involved in the original model, every local inference task contains at most pairwise factors.

We use convex BP [35, 18, 9] and distributed convex BP [22] as baselines. For our method, we assign
layout nodes to the first machine and segmentation nodes to the second one. Without introducing
additional regions and pre-computations the workload of this split is highly unbalanced. This makes
distributed convex BP even slower than convex BP since many messages are exchanged over the
network. To be more fair to distributed convex BP, we split the nodes into two parts, each with 2
layout variables and half of the segmentation variables. For all experiments, we set cr = 1 and
evaluate the settings ε = 1 and ε = 0. For a fair comparison we employ a single core for our
approach and convex BP and two cores for distributed convex BP. Note that our approach can be run
in parallel to achieve even faster convergence.

We compare our method to the baselines using two metrics: Normalized primal/dual is a rescaled
version of the original primal and dual normalized by the absolute value of the optimal score. This
allow us to compare different images that might have fairly different energies. In case none of
the algorithms converged we normalize all energies using the mean of the maximal primal and the
minimum dual. The second metric is the factor agreement, which is defined as the proportion of
factors that agree with the connected node marginals.

Fig. 5 depicts the normalized primal/dual as well as the factor agreement for ε = 0 (i.e., MAP)
and ε = 1 (i.e., marginals). We observe that our proposed approach converges significantly faster
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layout err: 0.90% segmentation err: 4.74% layout err: 1.15% segmentation err: 5.12% layout err: 1.75% segmentation err: 3.98%

layout err: 2.36% segmentation err: 4.06% layout err: 2.38% segmentation err: 3.77% layout err: 2.88% segmentation err: 6.01%

layout err: 2.89% segmentation err: 3.99% layout err: 4.20% segmentation err: 3.65% layout err: 4.79% segmentation err: 4.17%

layout err: 13.97% segmentation err: 32.08% layout err: 25.89% segmentation err: 16.70% layout err: 18.04% segmentation err: 5.34%

Figure 6: Qualitative Result (ε = 0) : First column illustrates the inferred layout (blue) and layout
ground truth (red). The second and third columns are estimated and ground truth segmentations re-
spectively. Failure modes are shown in the last row. They are due to bad vanishing point estimation.

than the baselines. We additionally observe that for densely coupled tasks, the performance of
dcBP degrades when exchanging messages every other iteration (yellow curves). Importantly, in
our experiments we never observed any of the other approaches to converge when our approach
did not converge. Tab. 1 depicts the time in seconds required to achieve a certain relative duality
gap. We observe that our proposed approach outperforms all baselines by more than one order of
magnitude. Fig. 6 shows qualitative results for ε = 0. Note that our approach manages to accurately
predict layouts and corresponding segmentations. Some failure cases are illustrated in the bottom
row. They are largely due to failures in the vanishing point detection which our approach can not
recover from.

5 Conclusions

We have proposed a partitioning strategy followed by a message passing algorithm which is able to
speed-up significantly dual decomposition methods for parallel inference in Markov random fields
with high-order terms and dense connections. We demonstrate the effectiveness of our approach on
the task of joint layout and semantic segmentation estimation from single images, and show that our
approach is orders of magnitude faster than existing methods. In the future, we plan to investigate
the applicability of our approach to other scene understanding tasks.

References
[1] A. Amini, T. Wymouth, and R. Jain. Using Dynamic Programming for Solving Variational Problems in

Vision. PAMI, 1990.

[2] D. Batra, S. Nowozin, and P. Kohli. Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual
Gap based Separation Algorithm. In Proc. AISTATS, 2011.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. PAMI,
2001.

[4] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. Computational Linguistics,
2003.

[5] R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Mor-
gan & Claypool, 2013.

[6] G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: Informed scheduling for asynchronous
message passing. In Proc. UAI, 2006.

[7] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
1956.

[8] T. Hazan and T. Jaakkola. On the Partition Function and Random Maximum A-Posteriori Perturbations.
In Proc. ICML, 2012.

[9] T. Hazan and A. Shashua. Norm-Product Belief Propagation: Primal-Dual Message-Passing for LP-
Relaxation and Approximate-Inference. Trans. Information Theory, 2010.

8



[10] P. Kohli and P. Kumar. Energy Minimization for Linear Envelope MRFs. In Proc. CVPR, 2010.
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