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Abstract

It was recently proved using graph covers (Ruazzi, 2012)ttteaBethe partition
function is upper bounded by the true partition function éobinary pairwise
model that is attractive. Here we provide a new, arguablypmproof from
first principles. We make use of the idea of clamping a vaeidbla particular
value. For an attractive model, we show that summing oveBtithe partition
functions for each sub-model obtained after clamping amiaksée can only raise
(and hence improve) the approximation. In fact, we derive@nger result that
may have other useful implications. Repeatedly clampirtdj we obtain a model
with no cycles, where the Bethe approximation is exactdgi¢he result. We also
provide a related lower bound on a broad class of approxipstéion functions
of general pairwise multi-label models that depends onlythentopology. We
demonstrate that clamping a few wisely chosen variablebeani practical value
by dramatically reducing approximation error.

1 Introduction

Marginal inference and estimating the partition functiam @indirected graphical models, also
called Markov random fields (MRFs), are fundamental prolslém machine learning. Exact
solutions may be obtained via variable elimination or thectfion tree method, but unless the
treewidth is bounded, this can take exponential time (F&888; Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008). Hence, many approximate aasthave been developed.

Of particular note is the Bethe approximation, which is Wydesed via thdoopy belief propagation
algorithm (LBP). Though this is typically fast and resulte aften accurate, in general it may con-
verge only to a local optimum of the Bethe free energy, or natyconverge at all (McEliece etlal.,
1998;| Murphy et dl., 1999). Another drawback is that, urgitently, there were no guarantees
on whether the returned approximation to the partition fiamcwas higher or lower than the true
value. Both aspects are in contrast to methods such aseifr@eweightecapproximation (TRW,
Wainwright et al.| 2005), which features a convex free epamy is guaranteed to return an upper
bound on the true partition function. Nevertheless, erogily, LBP or convergentimplementations
of the Bethe approximation often outperform other methidisshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, Z013), RuoZz¥1 22 recently proved that the optimum
Bethe partition function provides a lower bound for the tvatie, i.e.Zp < Z, for discrete binary
MRFs with submodular log potential cost functions of anyyarHere we provide an alternative
proof for attractive binary pairwise models. Our proof daesrely on any methods of loop series
(Sudderth et al., 2007) or graph covers, but rather buildsiedamental properties of the derivatives
of the Bethe free energy. Our approach applies only to bimagels (whereas Ruozzi, 2012 applies
to any arity), but we obtain stronger results for this cléissn which Zg < Z easily follows. We
use the idea aflampinga variable and considering the approximate sub-partitioctions over the
remaining variables, as the clamped variable takes eadh pbssible values.

Notation and preliminaries are presentedfzh In §3, we derive a lower bound, not just for the
standard Bethe partition function, but for a range of apjnake partition functions over multi-label



variables that may be defined from a variational perspeasvan optimization problem, based only
on the topology of the model. I§, we consider the Bethe approximation for attractive lyirpair-
wise models. We show that clamping any variable and sumnhia@ethe sub-partition functions
over the remaining variables can only increase (hence ive)tbe approximation. Together with a
similar argument to that used #8, this proves tha¥z < Z for this class of model. To derive the
result, we analyze how the optimum of the Bethe free energgwvas the singleton marginal of one
particular variable is fixed to different values[in 1]. Remarkably, we show that the negative of this
optimum, less the singleton entropy of the variable, is averriunction of the singleton marginal.
This may have further interesting implications. We presquteriments irf5, demonstrating that
clamping even a single variable selected using a simplasiguran be very beneficial.

1.1 Related work

Branching or conditioning on a variable (or set of variapbasd approximating over the remaining
variables has a fruitful history in algorithms such as braand-cut/(Padberg and Rinaldi, 1991;
Mitchell,12002), work on resolution versus search (Rish Bedhter, 2000) and various approaches
of (Darwiche, 2009, Chapter 8). Cutset conditioning wasuised by Pearl (1988) and refined
by|Peot and Shachter (1991) as a method to render the remadapnlogy acyclic in preparation
for belief propagation. Eaton and Ghahramani (2009) d@ezldhis further, introducing theondi-
tioned belief propagatioalgorithm together withback-belief-propagatioas a way to help identify
which variables to clampl._Liu et al. (2012) discussed feekbaessage passing for inference in
Gaussian (not discrete) models, deriving strong resultshie particular class of attractive mod-
els..Choi and Darwiche (2008) examined methods to apprdgitha partition function by deleting
edges.

2 Preliminaries

We consider a pairwise model withvariablesX;, ..., X,, and graph topologyV, £): V contains
nodes{1,...,n} where: corresponds to{;, and€ C V x V contains an edge for each pairwise
relationship. We sometimes consider multi-label modelengreach variablé&; takes values in
{0,...,L; — 1}, and sometimes restrict attention to binary models whéfec B = {0,1} V.
Letz = (x1,...,z,) be a configuration of all the variables, and(i) be the neighbors of. For

all analysis of binary models, to be consistent with Wellamgl Ten|(2001) and Weller and Jebara

(2013), we assume a reparameterization suchpthgt= e P , Where the energy of a configura-
tion, B = -3, iz — Z(M)eg Wz, with singleton potential8; and edge weight®;;.

2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functionsadbed byclampingone particular vari-
able X, that is we consider the model on the- 1 variablesX;, ..., X; 1, X;11,..., X,, obtained
by settingX; equal to one of its possible values.

Let Z| x,—. be the sub-partition function on the model obtained bysgti; = a,a € {0, ..., L; —
1}. Observe that true partition functions and marginals afecemsistent in the following sense:

L;—1
: Z|x,=a
Z=3 Zlx—VeV, pXi=a)=—F 1" 1)
=0 ij'o Z)x,=j

This is not true in general for approximate forms of inferehbut if the model has no cycles, then
in many cases of interesi] (1) does hold, motivating thefdlig definition.

Definition 1. We say an approximation to the log-partition functidn is ExactOnTreef it may be
specified by the variational formulalog Z 4 = mingecg Fa(q) where: (1)Q is some compact space
that includes the marginal polytope; (2), is a function of the (pseudo-)distributign(typically a
free energy approximation); and (3) For any model, whenavsubset of variabley’ C V is
clamped to particular valueB = {p; € {0,...,L; — 1}, VX, € V'},i.e. VX; € V', we constrain

For example, consider a single cycle with positive edge hisigThis haszs < Z (Weller et al.[ 2014),
yet after clamping any variable, each resulting sub-maleltree hence the Bethe approximation is exact.



X, = p;, which we write a3/’ + P, and the remaining induced graphBn V' is acyclic, then the
approximation is exact, i.eZa|y«p = Z|y«p. Similarly, define an approximation to be in the
broader class dllotSmallerOnTreesH it satisfies all of the above properties except that caadit

(3) is relaxed taZ 4|y« p > Z|v«p. Note that the Bethe approximation is ExactOnTrees, and
approximations such as TRW are NotSmallerOnTrees, in baseswhether using the marginal
polytope or any relaxation thereof, such as the cycle ol loalytope (Weller et all, 2014).

We shall derive bounds afi4 with the following idea: Obtain upper or lower bounds on tppr@x-
imation achieved by clamping and summing over the approtd@raab-partition functions; Repeat
until an acyclic graph is reached, where the approximasaither exact or bounded. We introduce
the following related concept from graph theory.

Definition 2. A feedback vertex s€FVS) of a graph is a set of vertices whose removal leaves a
graph without cycles. Determining if there exists a fee#bagrtex set of a given size is a classi-
cal NP-hard problen (Karp, 1972). There is a significantditiere on determining the minimum
cardinality of an FVS of a grap&y, which we write as/(G). Further, if vertices are assigned non-
negative weights, then a natural problem is to find an FVS mitimum weight, which we write as

v, (G). An FVS with a factor 2 approximation ta, (G) may be found in time(|V| + |£|log|£])
(Bafna etal.| 1999). For pairwise multi-label MRFs, we magate a weighted graph from the
topology by assigning each noda weight oflog L;, and then compute the correspondindG).

3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSen@ih Trees by observing that, >
ZA|x,=; ¥j from the definition (the sub-partition functions optimiageo a subset).

Theorem 3. If a pairwise MRF has topology with an FVS of sizeand corresponding values
L.,..., Ly, then for any approximation that is NotSmallerOnTregs, > ﬁ

Proof. We proceed by induction on. The base case = 0 holds by the assumption that,
is NotSmallerOnTrees. Now assume the result holdsefer 1 and consider a MRF which re-
quiresn vertices to be deleted to become acyclic. Clamp varidbleat each of itsL,, values

to create the approximatioﬁff) = Zf;o’l Zal|x,=;j. By the definition of NotSmallerOnTrees,

Za > Za|x,=; Y7, and by the inductive hypothesiB | x, —; > I_ZIL’iq:LJ
i=1 i
n) L,—1 Lp—1
Hence LnZs 2 74" = Y27 Zalx,= = s S0 Zlxa=s = b -

By considering an FVS with minimuf["_, L;, TheorenfB is equivalent to the following result.
Theorem 4. For any approximation that is NotSmallerOnTregs, > Ze™ V.

This bound applies to general multi-label models with anyvgiae and singleton potentials (no
need for attractive). The bound is trivial for a tree, buealty for a binary model with one cycle we
obtain thatZp > Z/2 for any potentials, even over the marginal polytope. Thenlas tight, at
least for uniformZL; = L Vi The bound depends only on the vertices that must be deletgelltb
a graph with no cycles, not on the number of cycles (whichrglegpper bounds (G)). For binary
models, exact inference takes tiB¢(|V| — |v(G)[)2v(%).

4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Betbproximation. We shall use results
derived in (Welling and Teh, 2001) and (Weller and Jebard320and adopt similar notation. The
Bethe partition functionZg, is defined as in Definitiohl 1, whei@ is set as thdocal polytope
relaxation and’4 is the Bethe free energy, given B(q) = E,(E) — Sg(q), whereE is the energy

2For example, in the binary case: consider a sub-MRF on a wyiteno singleton potentials and uniform,
very high edge weights. This can be shown to haye~ Z/2 (Weller et al.| 2014). Now connectof these
together in a chain using very weak edges (this constructidoe to N. Ruozzi).



andSp is the Bethe pairwise entropy approximation (see Wainwégd Jordan, 2008 for details).
We consider attractive binary pairwise models and applylaimlamping ideas to those usedd8.

In §4.7 we show that clamping can never decrease the approxBedite partition function, then
use this result iff4.2 to prove thaZg < Z for this class of model. In deriving the clamping result
of §4.7, in Theorerhl7 we show an interesting, stronger resulbenthe optimum Bethe free energy
changes as the singleton margiggais varied ovef0, 1].

4.1 Clamping a variable can only increase the Bethe partitio function

Let Zp be the Bethe partition function for the original model. CtawariableX; and form the new
approximationzg) = Z;:O Zg|x,=;. Inthis Section, we shall prove the following Theorem.

Theorem 5. For an attractive binary pairwise model and any variabie, Zg) > Zg.

We first introduce notation and derive preliminary resuitgich build to Theorerl7, our strongest
result, from which Theoreil 5 easily follows. Let= (q1, ..., q»,) be a location im-dimensional
pseudomarginal space, i.¢.is the singleton pseudomarginglX; = 1) in the local polytope. Let
F(q) be the Bethe free energy computed aising Bethe optimum pairwise pseudomarginals given
by the formula forg(X; = 1,X; = 1) = &;;(qi, g5, Wi;) in (Welling and Teh, 2001), i.e. for an
attractive model, for edgg, j), &;; is the lower root of

&l — [1+ aij(gi + ;)16 + (1 + aug)gigq; = 0, 2

wherea;; = Vi — 1, andW,; > 0 is the strength (associativity) of the log-potential edgsaght.

Let G(¢q) = —F(q). Note thatlog Zp = maxze,1» G(¢). For anyz € [0,1], consider the
optimum constrained by holding = z fixed, i.e. letlog Zg;(x) = maxge(o,1)n:q,= 9(q). Let
r*(z) = (r{(z),..., 771 (), (2),..., 7 (x)) with corresponding pairwise tern{g?; }, be an

arg max for where this optimum occurs. Observe that Z5;(0) = log Zg|x,—0,log Zpi(1) =
log Zp|x,=1 andlog Zp = log Zpi(q;) = max,c(o,1)» G(q), Whereg; is a location ofX; at which
the global optimum is achieved.

To prove Theoreni]5, we need a sufficiently good upper boundogi¥s;(¢f) compared to

log Z5:(0) andlog Zp,(1). First we demonstrate what such a bound could be, then phate t
this holds. LetS;(z) = —xzlogz — (1 — z)log(1 — ) be the standard singleton entropy.

Lemma 6 (Demonstrating what would be a sufficiently good upper baamidg Zz). If 3z € [0, 1]
such thafog Zp < xzlog Zp;(1) + (1 — x)log Zp;(0) + S;(z), then:

() Zgi(0) + Zgi(1) = Zp > ™ fo(x) wherefo(z) = 1 + e — "),

m = min(log Zp;(0),log Zp;(1)) andc = | log Zp,;(1) — log Zp;(0)|; and

(i) Vz € [0,1], fo(x) > 0 with equality iffx = o(c) = 1/(1 + exp(—c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is éashecked by differentiating. It
is also given in[(Koller and Friedman, 2009, Propositior8).1. O

See Figurél6 in the Supplement for example plots of the fandfi(x). Lemmd® motivates us to
consider if perhap®g Z; () might be upper bounded hylog Zp;(1)+(1—xz) log Zp;(0)+S;(x),

i.e. the linear interpolation betweéog Z5;(0) andlog Zp;(1), plus the singleton entropy term
Si(x). Itis easily seen that this would be truerif(¢;) were constant. In fact, we shall show that
r*(g;) varies in a particular way which yields the following, stgem result, which, together with
Lemmd6, will prove Theorefd 5.

Theorem 7. Let A;(q;) = log Zg;(q;) — Si(¢; ). For an attractive binary pairwise modeli;(q;) is
a convex function.

Proof. We outline the main points of the proof. Observe thatz) = max,c(o,1jm:q,—2 9(q) —
Si(z), whereG(q) = —F(q). Note that there may be multipteg max locationsr*(z). As shown
in (Weller and Jebara, 2013} is at least thrice differentiable i, 1)™ and all stationary points lie
in the interior(0, 1)™. Given our conditions, the ‘envelope theorem’ lof (Milgrobh®99, Theorem


















