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Abstract

It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition
function is upper bounded by the true partition function fora binary pairwise
model that is attractive. Here we provide a new, arguably simpler proof from
first principles. We make use of the idea of clamping a variable to a particular
value. For an attractive model, we show that summing over theBethe partition
functions for each sub-model obtained after clamping any variable can only raise
(and hence improve) the approximation. In fact, we derive a stronger result that
may have other useful implications. Repeatedly clamping until we obtain a model
with no cycles, where the Bethe approximation is exact, yields the result. We also
provide a related lower bound on a broad class of approximatepartition functions
of general pairwise multi-label models that depends only onthe topology. We
demonstrate that clamping a few wisely chosen variables canbe of practical value
by dramatically reducing approximation error.

1 Introduction

Marginal inference and estimating the partition function for undirected graphical models, also
called Markov random fields (MRFs), are fundamental problems in machine learning. Exact
solutions may be obtained via variable elimination or the junction tree method, but unless the
treewidth is bounded, this can take exponential time (Pearl, 1988; Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008). Hence, many approximate methods have been developed.

Of particular note is the Bethe approximation, which is widely used via theloopy belief propagation
algorithm (LBP). Though this is typically fast and results are often accurate, in general it may con-
verge only to a local optimum of the Bethe free energy, or may not converge at all (McEliece et al.,
1998; Murphy et al., 1999). Another drawback is that, until recently, there were no guarantees
on whether the returned approximation to the partition function was higher or lower than the true
value. Both aspects are in contrast to methods such as thetree-reweightedapproximation (TRW,
Wainwright et al., 2005), which features a convex free energy and is guaranteed to return an upper
bound on the true partition function. Nevertheless, empirically, LBP or convergent implementations
of the Bethe approximation often outperform other methods (Meshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, 2013), Ruozzi (2012) recently proved that the optimum
Bethe partition function provides a lower bound for the truevalue, i.e.ZB ≤ Z, for discrete binary
MRFs with submodular log potential cost functions of any arity. Here we provide an alternative
proof for attractive binary pairwise models. Our proof doesnot rely on any methods of loop series
(Sudderth et al., 2007) or graph covers, but rather builds onfundamental properties of the derivatives
of the Bethe free energy. Our approach applies only to binarymodels (whereas Ruozzi, 2012 applies
to any arity), but we obtain stronger results for this class,from whichZB ≤ Z easily follows. We
use the idea ofclampinga variable and considering the approximate sub-partition functions over the
remaining variables, as the clamped variable takes each of its possible values.

Notation and preliminaries are presented in§2. In §3, we derive a lower bound, not just for the
standard Bethe partition function, but for a range of approximate partition functions over multi-label
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variables that may be defined from a variational perspectiveas an optimization problem, based only
on the topology of the model. In§4, we consider the Bethe approximation for attractive binary pair-
wise models. We show that clamping any variable and summing the Bethe sub-partition functions
over the remaining variables can only increase (hence improve) the approximation. Together with a
similar argument to that used in§3, this proves thatZB ≤ Z for this class of model. To derive the
result, we analyze how the optimum of the Bethe free energy varies as the singleton marginal of one
particular variable is fixed to different values in[0, 1]. Remarkably, we show that the negative of this
optimum, less the singleton entropy of the variable, is a convex function of the singleton marginal.
This may have further interesting implications. We presentexperiments in§5, demonstrating that
clamping even a single variable selected using a simple heuristic can be very beneficial.

1.1 Related work

Branching or conditioning on a variable (or set of variables) and approximating over the remaining
variables has a fruitful history in algorithms such as branch-and-cut (Padberg and Rinaldi, 1991;
Mitchell, 2002), work on resolution versus search (Rish andDechter, 2000) and various approaches
of (Darwiche, 2009, Chapter 8). Cutset conditioning was discussed by Pearl (1988) and refined
by Peot and Shachter (1991) as a method to render the remaining topology acyclic in preparation
for belief propagation. Eaton and Ghahramani (2009) developed this further, introducing thecondi-
tioned belief propagationalgorithm together withback-belief-propagationas a way to help identify
which variables to clamp. Liu et al. (2012) discussed feedback message passing for inference in
Gaussian (not discrete) models, deriving strong results for the particular class of attractive mod-
els. Choi and Darwiche (2008) examined methods to approximate the partition function by deleting
edges.

2 Preliminaries

We consider a pairwise model withn variablesX1, . . . , Xn and graph topology(V , E): V contains
nodes{1, . . . , n} wherei corresponds toXi, andE ⊆ V × V contains an edge for each pairwise
relationship. We sometimes consider multi-label models where each variableXi takes values in
{0, . . . , Li − 1}, and sometimes restrict attention to binary models whereXi ∈ B = {0, 1} ∀i.
Let x = (x1, . . . , xn) be a configuration of all the variables, andN (i) be the neighbors ofi. For
all analysis of binary models, to be consistent with Wellingand Teh (2001) and Weller and Jebara

(2013), we assume a reparameterization such thatp(x) = e−E(x)

Z
, where the energy of a configura-

tion,E = −
∑

i∈V θixi −
∑

(i,j)∈E Wijxixj , with singleton potentialsθi and edge weightsWij .

2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functions obtained byclampingone particular vari-
ableXi, that is we consider the model on then−1 variablesX1, . . . , Xi−1, Xi+1, . . . , Xn obtained
by settingXi equal to one of its possible values.

LetZ|Xi=a be the sub-partition function on the model obtained by settingXi = a, a ∈ {0, . . . , Li−
1}. Observe that true partition functions and marginals are self-consistent in the following sense:

Z =

Li−1
∑

j=0

Z|Xi=j ∀i ∈ V , p(Xi = a) =
Z|Xi=a

∑Li−1
j=0 Z|Xi=j

. (1)

This is not true in general for approximate forms of inference,1 but if the model has no cycles, then
in many cases of interest, (1) does hold, motivating the following definition.

Definition 1. We say an approximation to the log-partition functionZA is ExactOnTreesif it may be
specified by the variational formula− logZA = minq∈Q FA(q) where: (1)Q is some compact space
that includes the marginal polytope; (2)FA is a function of the (pseudo-)distributionq (typically a
free energy approximation); and (3) For any model, whenevera subset of variablesV ′ ⊆ V is
clamped to particular valuesP = {pi ∈ {0, . . . , Li − 1}, ∀Xi ∈ V ′}, i.e. ∀Xi ∈ V ′, we constrain

1For example, consider a single cycle with positive edge weights. This hasZB < Z (Weller et al., 2014),
yet after clamping any variable, each resulting sub-model is a tree hence the Bethe approximation is exact.
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Xi = pi, which we write asV ′ ← P , and the remaining induced graph onV \V ′ is acyclic, then the
approximation is exact, i.e.ZA|V′←P = Z|V′←P . Similarly, define an approximation to be in the
broader class ofNotSmallerOnTreesif it satisfies all of the above properties except that condition
(3) is relaxed toZA|V′←P ≥ Z|V′←P . Note that the Bethe approximation is ExactOnTrees, and
approximations such as TRW are NotSmallerOnTrees, in both cases whether using the marginal
polytope or any relaxation thereof, such as the cycle or local polytope (Weller et al., 2014).

We shall derive bounds onZA with the following idea: Obtain upper or lower bounds on the approx-
imation achieved by clamping and summing over the approximate sub-partition functions; Repeat
until an acyclic graph is reached, where the approximation is either exact or bounded. We introduce
the following related concept from graph theory.

Definition 2. A feedback vertex set(FVS) of a graph is a set of vertices whose removal leaves a
graph without cycles. Determining if there exists a feedback vertex set of a given size is a classi-
cal NP-hard problem (Karp, 1972). There is a significant literature on determining the minimum
cardinality of an FVS of a graphG, which we write asν(G). Further, if vertices are assigned non-
negative weights, then a natural problem is to find an FVS withminimum weight, which we write as
νw(G). An FVS with a factor 2 approximation toνw(G) may be found in timeO(|V|+ |E| log |E|)
(Bafna et al., 1999). For pairwise multi-label MRFs, we may create a weighted graph from the
topology by assigning each nodei a weight oflogLi, and then compute the correspondingνw(G).

3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSmallerOnTrees by observing thatZA ≥
ZA|Xn=j ∀j from the definition (the sub-partition functions optimize over a subset).

Theorem 3. If a pairwise MRF has topology with an FVS of sizen and corresponding values
L1, . . . , Ln, then for any approximation that is NotSmallerOnTrees,ZA ≥

Z∏
n
i=1 Li

.

Proof. We proceed by induction onn. The base casen = 0 holds by the assumption thatZA

is NotSmallerOnTrees. Now assume the result holds forn − 1 and consider a MRF which re-
quiresn vertices to be deleted to become acyclic. Clamp variableXn at each of itsLn values
to create the approximationZ(n)

A :=
∑Ln−1

j=0 ZA|Xn=j . By the definition of NotSmallerOnTrees,

ZA ≥ ZA|Xn=j ∀j; and by the inductive hypothesis,ZA|Xn=j ≥
Z|Xn=j
∏n−1

i=1 Li

.

Hence,LnZA ≥ Z
(n)
A =

∑Ln−1
j=0 ZA|Xn=j ≥

1∏n−1
i=1 Li

∑Ln−1
j=0 Z|Xn=j =

Z∏n−1
i=1 Li

.

By considering an FVS with minimum
∏n

i=1 Li, Theorem 3 is equivalent to the following result.

Theorem 4. For any approximation that is NotSmallerOnTrees,ZA ≥ Ze−νw .

This bound applies to general multi-label models with any pairwise and singleton potentials (no
need for attractive). The bound is trivial for a tree, but already for a binary model with one cycle we
obtain thatZB ≥ Z/2 for any potentials, even over the marginal polytope. The bound is tight, at
least for uniformLi = L ∀i.2 The bound depends only on the vertices that must be deleted toyield
a graph with no cycles, not on the number of cycles (which clearly upper boundsν(G)). For binary
models, exact inference takes timeΘ((|V| − |ν(G)|)2ν(G)).

4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Betheapproximation. We shall use results
derived in (Welling and Teh, 2001) and (Weller and Jebara, 2013), and adopt similar notation. The
Bethe partition function,ZB, is defined as in Definition 1, whereQ is set as thelocal polytope
relaxation andFA is the Bethe free energy, given byF(q) = Eq(E)−SB(q), whereE is the energy

2For example, in the binary case: consider a sub-MRF on a cyclewith no singleton potentials and uniform,
very high edge weights. This can be shown to haveZB ≈ Z/2 (Weller et al., 2014). Now connectν of these
together in a chain using very weak edges (this constructionis due to N. Ruozzi).
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andSB is the Bethe pairwise entropy approximation (see Wainwright and Jordan, 2008 for details).
We consider attractive binary pairwise models and apply similar clamping ideas to those used in§3.
In §4.1 we show that clamping can never decrease the approximateBethe partition function, then
use this result in§4.2 to prove thatZB ≤ Z for this class of model. In deriving the clamping result
of §4.1, in Theorem 7 we show an interesting, stronger result on how the optimum Bethe free energy
changes as the singleton marginalqi is varied over[0, 1].

4.1 Clamping a variable can only increase the Bethe partition function

LetZB be the Bethe partition function for the original model. Clamp variableXi and form the new
approximationZ(i)

B =
∑1

j=0 ZB|Xi=j . In this Section, we shall prove the following Theorem.

Theorem 5. For an attractive binary pairwise model and any variableXi, Z
(i)
B ≥ ZB.

We first introduce notation and derive preliminary results,which build to Theorem 7, our strongest
result, from which Theorem 5 easily follows. Letq = (q1, . . . , qn) be a location inn-dimensional
pseudomarginal space, i.e.qi is the singleton pseudomarginalq(Xi = 1) in the local polytope. Let
F(q) be the Bethe free energy computed atq using Bethe optimum pairwise pseudomarginals given
by the formula forq(Xi = 1, Xj = 1) = ξij(qi, qj ,Wij) in (Welling and Teh, 2001), i.e. for an
attractive model, for edge(i, j), ξij is the lower root of

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (2)

whereαij = eWij − 1, andWij > 0 is the strength (associativity) of the log-potential edge weight.

Let G(q) = −F(q). Note thatlogZB = maxq∈[0,1]n G(q). For anyx ∈ [0, 1], consider the
optimum constrained by holdingqi = x fixed, i.e. letlogZBi(x) = maxq∈[0,1]n:qi=x G(q). Let
r∗(x) = (r∗1(x), . . . , r

∗
i−1(x), r

∗
i+1(x), . . . , r

∗
n(x)) with corresponding pairwise terms{ξ∗ij}, be an

argmax for where this optimum occurs. Observe thatlogZBi(0) = logZB|Xi=0, logZBi(1) =
logZB|Xi=1 andlogZB = logZBi(q

∗
i ) = maxq∈[0,1]n G(q), whereq∗i is a location ofXi at which

the global optimum is achieved.

To prove Theorem 5, we need a sufficiently good upper bound onlogZBi(q
∗
i ) compared to

logZBi(0) and logZBi(1). First we demonstrate what such a bound could be, then prove that
this holds. LetSi(x) = −x log x− (1− x) log(1− x) be the standard singleton entropy.

Lemma 6(Demonstrating what would be a sufficiently good upper boundon logZB). If ∃x ∈ [0, 1]
such thatlogZB ≤ x logZBi(1) + (1 − x) logZBi(0) + Si(x), then:
(i) ZBi(0) + ZBi(1)− ZB ≥ emfc(x) wherefc(x) = 1 + ec − exc+Si(x),
m = min(logZBi(0), logZBi(1)) andc = | logZBi(1)− logZBi(0)|; and
(ii) ∀x ∈ [0, 1], fc(x) ≥ 0 with equality iffx = σ(c) = 1/(1 + exp(−c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is easily checked by differentiating. It
is also given in (Koller and Friedman, 2009, Proposition 11.8).

See Figure 6 in the Supplement for example plots of the functionfc(x). Lemma 6 motivates us to
consider if perhapslogZBi(x) might be upper bounded byx logZBi(1)+(1−x) logZBi(0)+Si(x),
i.e. the linear interpolation betweenlogZBi(0) and logZBi(1), plus the singleton entropy term
Si(x). It is easily seen that this would be true ifr∗(qi) were constant. In fact, we shall show that
r∗(qi) varies in a particular way which yields the following, stronger result, which, together with
Lemma 6, will prove Theorem 5.

Theorem 7. LetAi(qi) = logZBi(qi)− Si(qi). For an attractive binary pairwise model,Ai(qi) is
a convex function.

Proof. We outline the main points of the proof. Observe thatAi(x) = maxq∈[0,1]n:qi=x G(q) −
Si(x), whereG(q) = −F(q). Note that there may be multipleargmax locationsr∗(x). As shown
in (Weller and Jebara, 2013),F is at least thrice differentiable in(0, 1)n and all stationary points lie
in the interior(0, 1)n. Given our conditions, the ‘envelope theorem’ of (Milgrom,1999, Theorem
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