NIPS Proceedingsβ

Multi-Resolution Cascades for Multiclass Object Detection

Part of: Advances in Neural Information Processing Systems 27 (NIPS 2014)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


An algorithm for learning fast multiclass object detection cascades is introduced. It produces multi-resolution (MRes) cascades, whose early stages are binary target vs. non-target detectors that eliminate false positives, late stages multiclass classifiers that finely discriminate target classes, and middle stages have intermediate numbers of classes, determined in a data-driven manner. This MRes structure is achieved with a new structurally biased boosting algorithm (SBBoost). SBBost extends previous multiclass boosting approaches, whose boosting mechanisms are shown to implement two complementary data-driven biases: 1) the standard bias towards examples difficult to classify, and 2) a bias towards difficult classes. It is shown that structural biases can be implemented by generalizing this class-based bias, so as to encourage the desired MRes structure. This is accomplished through a generalized definition of multiclass margin, which includes a set of bias parameters. SBBoost is a boosting algorithm for maximization of this margin. It can also be interpreted as standard multiclass boosting algorithm augmented with margin thresholds or a cost-sensitive boosting algorithm with costs defined by the bias parameters. A stage adaptive bias policy is then introduced to determine bias parameters in a data driven manner. This is shown to produce MRes cascades that have high detection rate and are computationally efficient. Experiments on multiclass object detection show improved performance over previous solutions.