Altitude Training:
Strong Bounds for Single-Layer Dropout

Stefan Wager*, William Fithian*, Sida Wang', and Percy Liang*
Departments of Statistics* and Computer Science'
Stanford University, Stanford, CA-94305, USA
{swager, wfithian}@stanford.edu, {sidaw, pliang}@cs.stanford.edu

Abstract

Dropout training, originally designed for deep neural networks, has been success-
ful on high-dimensional single-layer natural language tasks. This paper proposes
a theoretical explanation for this phenomenon: we show that, under a generative
Poisson topic model with long documents, dropout training improves the exponent
in the generalization bound for empirical risk minimization. Dropout achieves this
gain much like a marathon runner who practices at altitude: once a classifier learns
to perform reasonably well on training examples that have been artificially cor-
rupted by dropout, it will do very well on the uncorrupted test set. We also show
that, under similar conditions, dropout preserves the Bayes decision boundary and
should therefore induce minimal bias in high dimensions.

1 Introduction

Dropout training [1] is an increasingly popular method for regularizing learning algorithms. Dropout
is most commonly used for regularizing deep neural networks [2, 3, 4, 5], but it has also been found
to improve the performance of logistic regression and other single-layer models for natural language
tasks such as document classification and named entity recognition [6, 7, 8]. For single-layer linear
models, learning with dropout is equivalent to using “blankout noise” [9].

The goal of this paper is to gain a better theoretical understanding of why dropout regularization
works well for natural language tasks. We focus on the task of document classification using linear
classifiers where data comes from a generative Poisson topic model. In this setting, dropout effec-
tively deletes random words from a document during training; this corruption makes the training
examples harder. A classifier that is able to fit the training data will therefore receive an accuracy
boost at test time on the much easier uncorrupted examples. An apt analogy is altitude training,
where athletes practice in more difficult situations than they compete in. Importantly, our analysis
does not rely on dropout merely creating more pseudo-examples for training, but rather on dropout
creating more challenging training examples. Somewhat paradoxically, we show that removing in-
formation from training examples can induce a classifier that performs better at test time.

Main Result Consider training the zero-one loss empirical risk minimizer (ERM) using dropout,
where each word is independently removed with probability 6 € (0, 1). For a class of Poisson
generative topic models, we show that dropout gives rise to what we call the altitude training phe-
nomenon: dropout improves the excess risk of the ERM by multiplying the exponent in its decay
rate by 1/(1 — §). This improvement comes at the cost of an additive term of O(1/v/)\), where

is the average number of words per document. More formally, let A* and hg be the expected and

S. Wager and W. Fithian are supported by a B.C. and E.J. Eaves Stanford Graduate Fellowship and NSF
VIGRE grant DMS-0502385 respectively.



empirical risk minimizers, respectively; let h5 and hs be the corresponding quantities for dropout
training. Let Err(h) denote the error rate (on test examples) of h. In Section 4, we show that:

Err (i}é) —Err(h}) = Op (Err (izo) — Err (h*)) T, % , 1)

dropout excess risk ERM excess risk

where Op is a variant of big-O in probability notation that suppresses logarithmic factors. If A is
large (we are classifying long documents rather than short snippets of text), dropout considerably
accelerates the decay rate of excess risk. The bound (1) holds for fixed choices of d. The constants
in the bound worsen as § approaches 1, and so we cannot get zero excess risk by sending ¢ to 1.

Our result is modular in that it converts upper bounds on the ERM excess risk to upper bounds on
the dropout excess risk. For example, recall from classic VC theory that the ERM excess risk is
Op(y/d/n), where d is the number of features (vocabulary size) and n is the number of training
examples. With dropout 6 = 0.5, our result (1) directly implies that the dropout excess risk is

Op(d/n+1/VN).

The intuition behind the proof of (1) is as follows: when 6 = 0.5, we essentially train on half
documents and test on whole documents. By conditional independence properties of the generative
topic model, the classification score is roughly Gaussian under a Berry-Esseen bound, and the error
rate is governed by the tails of the Gaussian. Compared to half documents, the coefficient of variation
of the classification score on whole documents (at test time) is scaled down by v/1 — ¢ compared to
half documents (at training time), resulting in an exponential reduction in error. The additive penalty
of 1/ VX stems from the Berry-Esseen approximation.

Note that the bound (1) only controls the dropout excess risk. Even if dropout reduces the excess
risk, it may introduce a bias Err(h}) —Err(h*), and thus (1) is useful only when this bias is small. In
Section 5, we will show that the optimal Bayes decision boundary is not affected by dropout under
the Poisson topic model. Bias is thus negligible when the Bayes boundary is close to linear.

It is instructive to compare our generalization bound to that of Ng and Jordan [10], who showed that
the naive Bayes classifier exploits a strong generative assumption—conditional independence of the
features given the label—to achieve an excess risk of Op(+/(log d)/n). However, if the generative
assumption is incorrect, then naive Bayes can have a large bias. Dropout enables us to cut excess risk
without incurring as much bias. In fact, naive Bayes is closely related to logistic regression trained
using an extreme form of dropout with § — 1. Training logistic regression with dropout rates from
the range ¢ € (0, 1) thus gives a family of classifiers between unregularized logistic regression and
naive Bayes, allowing us to tune the bias-variance tradeoff.

Other perspectives on dropout In the general setting, dropout only improves generalization by
a multiplicative factor. McAllester [11] used the PAC-Bayes framework to prove a generalization
bound for dropout that decays as 1 — §. Moreover, provided that J is not too close to 1, dropout
behaves similarly to an adaptive Lo regularizer with parameter 6 /(1—4) [6, 12], and at least in linear
regression such Lo regularization improves generalization error by a constant factor. In contrast, by
leveraging the conditional independence assumptions of the topic model, we are able to improve the
exponent in the rate of convergence of the empirical risk minimizer.

It is also possible to analyze dropout as an adaptive regularizer [6, 9, 13]: in comparison with Lo
regularization, dropout favors the use of rare features and encourages confident predictions. If we
believe that good document classification should produce confident predictions by understanding
rare words with Poisson-like occurrence patterns, then the work on dropout as adaptive regulariza-
tion and our generalization-based analysis are two complementary explanations for the success of
dropout in natural language tasks.

2 Dropout Training for Topic Models

In this section, we introduce binomial dropout, a form of dropout suitable for topic models, and the
Poisson topic model, on which all our analyses will be based.



Binomial Dropout Suppose that we have a binary classification problem' with count features

@ € {0,1,2,...}¢ and labels y* € {0, 1}. For example, xgi) is the number of times the j-th
word in our dictionary appears in the i-th document, and (¥ is the label of the document. Our goal

is to train a weight vector @ that classifies new examples with features x via a linear decision rule
9 =I{w -z > 0}. We start with the usual empirical risk minimizer:

o < argmin, cpa {Z ¢ (w; 200 yo:)) } )
=1

for some loss function ¢ (we will analyze the zero-one loss but use logistic loss in experiments [e.g.,
10, 14, 15]). Binomial dropout trains on perturbed features () instead of the original features (%)

Ws def argmin,, {ZE [ ( ; , y( ))] } , where a:g Y — Binom (xg-i); 1-— 5) . 3)

In other words, during training, we randomly thin the j-th feature x; with binomial noise. If x;
counts the number of times the j-th word appears in the document, then replacing x; with Z; is
equivalent to independently deleting each occurrence of word j with probability 6. Because we
are only interested in the decision boundary, we do not scale down the weight vector obtained by
dropout by a factor 1 — 4 as is often done [e.g., 1].

Binomial dropout differs slightly from the usual definition of (blankout) dropout, which alters the
feature vector = by setting random coordinates to 0 [6, 9, 11, 12]. The reason we chose to study
binomial rather than blankout dropout is that Poisson random variables remain Poisson even after
binomial thinning; this fact lets us streamline our analysis. For rare words that appear once in the
document, the two types of dropout are equivalent.

A Generative Poisson Topic Model Throughout our analysis, we assume that the data is drawn
from a Poisson topic model depicted in Figure 1a and defined as follows. Each document i is as-
signed a label 3y(*) according to some Bernoulli distribution. Then, given the label y(*), the document
gets a topic 7(*) € © from a distribution py(- Given the topic 7@, for every word j in the vocabu-

(@)

% i . (B T
lary, we generate its frequency x;~ according to xg ) | 70 ~ P01sson(>\§- )), where )\; ) e [0, 00)

is the expected number of tlmes word j appears under topic 7. Note that [|\(7)||; is the average

length of a document with topic 7. Define A def min,ce ||A(7||; to be the shortest average doc-
ument length across topics. If © contains only two topics—one for each class—we get the naive
Bayes model. If © is the (K — 1)-dimensional simplex where A(™) is a 7-mixture over K basis
vectors, we get the K -topic latent Dirichlet allocation [16].2

Note that although our generalization result relies on a generative model, the actual learning algo-
rithm is agnostic to it. Our analysis shows that dropout can take advantage of a generative structure
while remaining a discriminative procedure. If we believed that a certain topic model held exactly
and we knew the number of topics, we could try to fit the full generative model by EM. This,
however, could make us vulnerable to model misspecification. In contrast, dropout benefits from
generative assumptions while remaining more robust to misspecification.

3 Altitude Training: Linking the Dropout and Data-Generating Measures

Our goal is to understand the behavior of a classifier hs trained using dropout. During dropout,
the error of any classifier h is characterized by two measures. In the end, we are interested in the
usual generalization error (expected risk) of i where x is drawn from the underlying data-generating
measure:

Err (h) € Py + h(z)]. (4)

'Dropout training is known to work well in practice for multi-class problems [8]. For simplicity, however,
we will restrict our theoretical analysis to a two-class setup.

% In topic modeling, the vertices of the simplex © are “topics” and 7 is a mixture of topics, whereas we call
T itself a topic.




However, since dropout training works on the corrupted data z (see (3)), in the limit of infinite data,
the dropout estimator will converge to the minimizer of the generalization error with respect to the
dropout measure over I:

Errs (h) € Py # h()]. ®)

The main difficulty in analyzing the generalization of dropout is that classical theory tells us that
the generalization error with respect to the dropout measure will decrease as n — oo, but we are
interested in the original measure. Thus, we need to bound Err in terms of Errs. In this section, we
show that the error on the original measure is actually much smaller than the error on the dropout
measure; we call this the altitude training phenomenon.

Under our generative model, the count features x; are conditionally independent given the topic
7. We thus focus on a single fixed topic 7 and establish the following theorem, which provides a
per-topic analogue of (1). Section 4 will then use this theorem to obtain our main result.

Theorem 1. Let h be a binary linear classifier with weights w, and suppose that our features are
drawn from the Poisson generative model given topic T. Let c, be the more likely label given T:

Cr def arg max PP [y(i) =c | @ = T} . (6)
ce{0,1}

Let €, be the sub-optimal prediction rate in the dropout measure
ér déf]P’{H{wm%(i)>O}#cT]T(i):T}, (7)

where &%) is an example thinned by binomial dropout (3), and P is taken over the data-generating
process. Let €, be the sub-optimal prediction rate in the original measure

er défp{ﬂ{w'x(i)>0}#CT’T(i)ZT}. (8)
Then:

~ 1
Er = @) (57{5 + v \IJT> 5 (9)
where ¥, = max; {w]2 }/ Z?:l /\E-T)wjz, and the constants in the bound depend only on 0.

Theorem 1 only provides us with a useful bound when the term .. is small. Whenever the largest
w? is not much larger than the average w?, then /¥, scales as O(1/ V/A), where ) is the average
document length. Thus, the bound (9) is most useful for long documents.

A Heuristic Proof of Theorem 1. The proof of Theorem 1 is provided in the technical appendix.
Here, we provide a heuristic argument for intuition. Given a fixed topic 7, suppose that it is optimal
to predict ¢c; = 1, so our test error is ¢, = P [w -z <0 ] T] . For long enough documents, by

. def . .
the central limit theorem, the score s = w -  will be roughly Gaussian s ~ A (,uT, 03) , where

Ur = 2?21 )\ET)wj and 02 = Z;l:l )\Y)wjz. This implies that e, ~ ® (—pu, /o), where ® is the

cumulative distribution function of the Gaussian. Now, let 3 def w - T be the score on a dropout
sample. Clearly, E [§] = (1 — §) 1, and Var [§] = (1 — &) 02, because the variance of a Poisson
random variable scales with its mean. Thus,

(1-9)
i D <—\/1 - 5“7) ~® <_“T> ~ el1=9), (10)
or o
Figure 1b illustrates the relationship between the two Gaussians. This explains the first term on the
right-hand side of (9). The extra error term /W arises from a Berry-Esseen bound that approxi-
mates Poisson mixtures by Gaussian random variables.

4 A Generalization Bound for Dropout

By setting up a bridge between the dropout measure and the original data-generating measure, The-
orem 1 provides a foundation for our analysis. It remains to translate this result into a statement
about the generalization error of dropout. For this, we need to make a few assumptions.
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Figure 1: (a) Graphical model. (b) The altitude training phenomenon.

Our first assumption is fundamental: if the classification signal is concentrated among just a few
features, then we cannot expect dropout training to do well. The second and third assumptions,
which are more technical, guarantee that a classifier can only do well overall if it does well on every
topic; this lets us apply Theorem 1. A more general analysis that relaxes Assumptions 2 and 3 may
be an interesting avenue for future work.

Assumption 1: well-balanced weights First, we need to assume that all the signal is not concen-
trated in a few features. To make this intuition formal, we say a linear classifier with weights w is
well-balanced if the following holds for each topic 7:

d T
max; {wf} dim1 )\5 )
s )\(‘T)wf

j=17"3

< kforsome 0 < Kk < 0. (11)

For example, suppose each word was either useful (Jw;| = 1) or not (w; = 0); then & is the inverse
expected fraction of words in a document that are useful. In Theorem 2 we restrict the ERM to
well-balanced classifiers and assume that the expected risk minimizer h* over all linear rules is also
well-balanced.

Assumption 2: discrete topics Second, we assume that there are a finite number 7" of topics, and
that the available topics are not too rare or ambiguous: the minimal probability of observing any
topic 7 is bounded below by

P [7_] 2 Pmin > 07 (12)
and that each topic-conditional probability is bounded away from % (random guessing):
. , 1
‘P{y(z)=c|r(”:7}—2’>a>0 (13)
for all topics 7 € {1, ..., T'}. This assumption substantially simplifies our arguments, allowing us

to apply Theorem 1 to each topic separately without technical overhead.

Assumption 3: distinct topics Finally, as an extension of Assumption 2, we require that the topics
be “well separated.” First, define Erry, = Py # ., where ¢, is the most likely label given
topic 7 (6); this is the error rate of the optimal decision rule that sees topic 7. We assume that the
best linear rule hj satisfying (11) is almost as good as always guessing the best label c, under the
dropout measure:

Frrg (h) = Brrms + O <%) , (14)



where, as usual, A is a lower bound on the average document length. If the dimension d is larger
than the number of topics 7', this assumption is fairly weak: the condition (14) holds whenever the
matrix II of topic centers has full rank, and the minimum singular value of II is not too small (see
Proposition 6 in the Appendix for details). This assumption is satisfied if the different topics can be
separated from each other with a large margin.

Under Assumptions 1-3 we can turn Theorem 1 into a statement about generalization error.

Theorem 2. Suppose that our features x are drawn from the Poisson generative model (Figure 1a),

and Assumptions 1-3 hold. Define the excess risks of the dropout classifier hs on the dropout and
data-generating measures, respectively:

i et Errs (il(;) — Errs (hy) and n 4f By (ﬁg) — Err (h}). (15)

Then, the altitude training phenomenon applies:

~ 1 1
oo+ ).

The above bound scales linearly in p;“%, and o~ the full dependence on § is shown in the appendix.

In a sense, Theorem 2 is a meta-generalization bound that allows us to transform generalization
bounds with respect to the dropout measure (7}) into ones on the data-generating measure (1) in a
modular way. As a simple example, standard VC theory provides an 7 = Op(1/d/n) bound which,
together with Theorem 2, yields:

Corollary 3. Under the same conditions as Theorem 2, the dropout classifier hs achieves the fol-

lowing excess risk: X
- ~ AR
Err (h(g) — Err (k) = Op ( n) + 7 17

More generally, we can often check that upper bounds for Err(h) — Err(h*) also work as upper
bounds for Errs(hs) — Errs(h}); this gives us the heuristic result from (1).

5 The Bias of Dropout

In the previous section, we showed that under the Poisson topic model in Figure 1a, dropout can

achieve a substantial cut in excess risk Err(h;s) — Err(h}). But to complete our picture of dropout’s
performance, we must address the bias of dropout: Err(h}) — Err(h*).

Dropout can be viewed as importing “hints” from a generative assumption about the data. Each ob-
served (z, y) pair (each labeled document) gives us information not only about the conditional class
probability at z, but also about the conditional class probabilities at numerous other hypothetical
values 7 representing shorter documents of the same class that did not occur. Intuitively, if these &
are actually good representatives of that class, the bias of dropout should be mild.

For our key result in this section, we will take the Poisson generative model from Figure 1a, but
further assume that document length is independent of the topic. Under this assumption, we will
show that dropout preserves the Bayes decision boundary in the following sense:

Proposition 4. Let (x,y) be distributed according to the Poisson topic model of Figure la. Assume
that document length is independent of topic: |\7)|y = X for all topics T. Let & be a binomial

dropout sample of x with some dropout probability § € (0, 1). Then, for every feature vector v € R,
we have:

P[y:l‘i‘:v]:ﬁ”[y:”x:v]. (18)

If we had an infinite amount of data (Z, y) corrupted under dropout, we would predict according to
I{P [y = 1|& = v] > }. The significance of Proposition 4 is that this decision rule is identical to
the true Bayes decision boundary (without dropout). Therefore, the empirical risk minimizer of a
sufficiently rich hypothesis class trained with dropout would incur very small bias.
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Figure 2: Behavior of binomial dropout in simulations. In the left panel, the circles are the original
data, while the dots are dropout-thinned examples. The Monte Carlo error is negligible.

However, Proposition 4 does not guarantee that dropout incurs no bias when we fit a linear classifier.
In general, the best linear approximation for classifying shorter documents is not necessarily the
best for classifying longer documents. As n — oo, a linear classifier trained on (z,y) pairs will
eventually outperform one trained on (Z, y) pairs.

Dropout for Logistic Regression To gain some more intuition about how dropout affects linear
classifiers, we consider logistic regression. A similar phenomenon should also hold for the ERM,
but discussing this solution is more difficult since the ERM solution does not have have a simple
characterization. The relationship between the 0-1 loss and convex surrogates has been studied
by, e.g., [14, 15]. The score criterion for logistic regression is 0 = >_7" | (y9 — p;) z(!), where
P =1+ ez )~ 1 are the fitted probabilities. Note that easily-classified examples (where p; is

close to (V) play almost no role in driving the fit. Dropout turns easy examples into hard examples,
giving more examples a chance to participate in learning a good classification rule.

Figure 2a illustrates dropout’s tendency to spread influence more democratically for a simple classi-
fication problem with d = 2. The red class is a 99:1 mixture over two topics, one of which is much
less common, but harder to classify, than the other. There is only one topic for the blue class. For
long documents (open circles in the top right), the infrequent, hard-to-classify red cluster dominates
the fit while the frequent, easy-to-classify red cluster is essentially ignored. For dropout documents
with § = 0.75 (small dots, lower left), both red clusters are relatively hard to classify, so the infre-
quent one plays a less disproportionate role in driving the fit. As a result, the fit based on dropout is
more stable but misses the finer structure near the decision boundary. Note that the solid gray curve,
the Bayes boundary, is unaffected by dropout, per Proposition 4. But, because it is nonlinear, we
obtain a different linear approximation under dropout.

6 Experiments and Discussion

Synthetic Experiment Consider the following instance of the Poisson topic model: We choose
the document label uniformly at random: P [y(i) = 1} = % Given label 0, we choose topic 7(*) = 0
deterministically; given label 1, we choose a real-valued topic 7(%) ~ Exp(3). The per-topic Poisson
intensities A\(7) are defined as follows:

(1, ...,1]0,...,0]0,...,0) ifr=0, o)
6m) = 0,...,0 | Ty, T ’ 0,...,0) otherwise, )\J(T) =1000 ————. (19)
N——— | N—— 500 07,,
7 7 486 j'=1¢"

The first block of 7 independent words are indicative of label 0, the second block of 7 correlated
words are indicative of label 1, and the remaining 486 words are indicative of neither.
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Figure 3: Experiments on sentiment classification. More dropout is better relative to logistic regres-
sion for small datasets and gradually worsens with more training data.

We train a model on training sets of various size n, and evaluate the resulting classifiers’ error rates
on a large test set. For dropout, we recalibrate the intercept on the training set. Figure 2b shows
the results. There is a clear bias-variance tradeoff, with logistic regression (§ = 0) and naive Bayes
(6 = 1) on the two ends of the spectrum. For moderate values of n, dropout improves performance,
with 6 = 0.95 (resulting in roughly 50-word documents) appearing nearly optimal for this example.

Sentiment Classification We also examined the performance of dropout as a function of training
set size on a document classification task. Figure 3a shows results on the Polarity 2.0 task [17],
where the goal is to classify positive versus negative movie reviews on IMDB. We divided the
dataset into a training set of size 1,200 and a test set of size 800, and trained a bag-of-words logistic
regression model with 50,922 features. This example exhibits the same behavior as our simulation.
Using a larger § results in a classifier that converges faster at first, but then plateaus. We also
ran experiments on a larger IMDB dataset [18] with training and test sets of size 25,000 each and
approximately 300,000 features. As Figure 3b shows, the results are similar, although the training
set is not large enough for the learning curves to cross. When using the full training set, all but three
pairwise comparisons in Figure 3 are statistically significant (p < 0.05 for McNemar’s test).

Dropout and Generative Modeling Naive Bayes and empirical risk minimization represent two
divergent approaches to the classification problem. ERM is guaranteed to find the best model as n —
oo but can have suboptimal generalization error when n is not large relative to d. Conversely, naive
Bayes has very low generalization error, but suffers from asymptotic bias. In this paper, we showed
that dropout behaves as a link between ERM and naive Bayes, and can sometimes achieve a more
favorable bias-variance tradeoff. By training on randomly generated sub-documents rather than on
whole documents, dropout implicitly codifies a generative assumption about the data, namely that
excerpts from a long document should have the same label as the original document (Proposition 4).

Logistic regression with dropout appears to have an intriguing connection to the naive Bayes SVM
[NBSVM, 19], which is a way of using naive Bayes generative assumptions to strengthen an SVM.
In arecent survey of bag-of-words classifiers for document classification, NBSVM and dropout often
obtain state-of-the-art accuracies [e.g., 7]. This suggests that a good way to learn linear models for
document classification is to use discriminative models that borrow strength from an approximate
generative assumption to cut their generalization error. Our analysis presents an interesting contrast
to other work that directly combine generative and discriminative modeling by optimizing a hybrid
likelihood [20, 21, 22, 23, 24, 25]. Our approach is more guarded in that we only let the generative
assumption speak through pseudo-examples.

Conclusion We have presented a theoretical analysis that explains how dropout training can be
very helpful under a Poisson topic model assumption. Specifically, by making training examples
artificially difficult, dropout improves the exponent in the generalization bound for ERM. We believe
that this work is just the first step in understanding the benefits of training with artificially corrupted
features, and we hope the tools we have developed can be extended to analyze other training schemes
under weaker data-generating assumptions.
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