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Abstract

We propose a novel sampling framework for inference in probabilistic models: an
active learning approach that converges more quickly (in wall-clock time) than
Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in proba-
bilistic inference is numerical integration, to average over ensembles of models or
unknown (hyper-)parameters (for example to compute the marginal likelihood or
a partition function). MCMC has provided approaches to numerical integration that
deliver state-of-the-art inference, but can suffer from sample inefficiency and poor
convergence diagnostics. Bayesian quadrature techniques offer a model-based
solution to such problems, but their uptake has been hindered by prohibitive com-
putation costs. We introduce a warped model for probabilistic integrands (like-
lihoods) that are known to be non-negative, permitting a cheap active learning
scheme to optimally select sample locations. Our algorithm is demonstrated to
offer faster convergence (in seconds) relative to simple Monte Carlo and annealed
importance sampling on both synthetic and real-world examples.

1 Introduction

Bayesian approaches to machine learning problems inevitably call for the frequent approximation
of computationally intractable integrals of the form

Z = 〈`〉 =
∫
`(x)π(x) dx, (1)

where both the likelihood `(x) and prior π(x) are non-negative. Such integrals arise when marginal-
ising over model parameters or variables, calculating predictive test likelihoods and computing
model evidences. In all cases the function to be integrated—the integrand—is naturally constrained
to be non-negative, as the functions being considered define probabilities.

In what follows we will primarily consider the computation of model evidence, Z. In this case
`(x) defines the unnormalised likelihood over a D-dimensional parameter set, x1, ..., xD, and π(x)
defines a prior density over x. Many techniques exist for estimating Z, such as annealed impor-
tance sampling (AIS) [1], nested sampling [2], and bridge sampling [3]. These approaches are based
around a core Monte Carlo estimator for the integral, and make minimal effort to exploit prior in-
formation about the likelihood surface. Monte Carlo convergence diagnostics are also unreliable for
partition function estimates [4, 5, 6]. More advanced methods—e.g., AIS—also require parameter
tuning, and will yield poor estimates with misspecified parameters.
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The Bayesian quadrature (BQ) [7, 8, 9, 10] approach to estimating model evidence is inherently
model based. That is, it involves specifying a prior distribution over likelihood functions in the form
of a Gaussian process (GP) [11]. This prior may be used to encode beliefs about the likelihood
surface, such as smoothness or periodicity. Given a set of samples from `(x), posteriors over both
the integrand and the integral may in some cases be computed analytically (see below for discussion
on other generalisations). Active sampling [12] can then be used to select function evaluations so as
to maximise the reduction in entropy of either the integrand or integral. Such an approach has been
demonstrated to improve sample efficiency, relative to naı̈ve randomised sampling [12].

In a big-data setting, where likelihood function evaluations are prohibitively expensive, BQ is
demonstrably better than Monte Carlo approaches [10, 12]. As the cost of the likelihood decreases,
however, BQ no longer achieves a higher effective sample rate per second, because the computa-
tional cost of maintaining the GP model and active sampling becomes relevant, and many Monte
Carlo samples may be generated for each new BQ sample. Our goal was to develop a cheap and
accurate BQ model alongside an efficient active sampling scheme, such that even for low cost likeli-
hoods BQ would be the scheme of choice. Our contributions extend existing work in two ways:

Square-root GP: Foundational work [7, 8, 9, 10] on BQ employed a GP prior directly on the likeli-
hood function, making no attempt to enforce non-negativity a priori. [12] introduced an approximate
means of modelling the logarithm of the integrand with a GP. This involved making a first-order ap-
proximation to the exponential function, so as to maintain tractability of inference in the integrand
model. In this work, we choose another classical transformation to preserve non-negativity—the
square-root. By placing a GP prior on the square-root of the integrand, we arrive at a model which
both goes some way towards dealing with the high dynamic range of most likelihoods, and enforces
non-negativity without the approximations resorted to in [12].

Fast Active Sampling: Whereas most approaches to BQ use either a randomised or fixed sampling
scheme, [12] targeted the reduction in the expected variance of Z. Here, we sample where the
expected posterior variance of the integrand after the quadratic transform is at a maximum. This is
a cheap way of balancing exploitation of known probability mass and exploration of the space in
order to approximately minimise the entropy of the integral.

We compare our approach, termed warped sequential active Bayesian integration (WSABI), to non-
negative integration with standard Monte Carlo techniques on simulated and real examples. Cru-
cially, we make comparisons of error against ground truth given a fixed compute budget.

2 Bayesian Quadrature

Given a non analytic integral 〈`〉 :=
∫
`(x)π(x) dx on a domain X = RD, Bayesian quadrature

is a model based approach of inferring both the functional form of the integrand and the value of
the integral conditioned on a set of sample points. Typically the prior density is assumed to be a
Gaussian, π(x) := N (x;ν,Λ); however, via the use of an importance re-weighting trick, q(x) =
(q(x)/π(x))π(x), any prior density q(x) may be integrated against. For clarity we will henceforth
notationally consider only the X = R case, although all results trivially extend to X = Rd.

Typically a GP prior is chosen for `(x), although it may also be directly specified on
`(x)π(x). This is parameterised by a mean µ(x) and scaled Gaussian covariance K(x, x′) :=

λ2 exp
(
− 1

2
(x−x′)2

σ2

)
. The output length-scale λ and input length-scale σ control the standard devi-

ation of the output and the autocorrelation range of each function evaluation respectively, and will
be jointly denoted as θ = {λ, σ}. Conditioned on samples xd = {x1, ..., xN} and associated func-
tion values `(xd), the posterior mean is mD(x) := µ(x) +K(x, xd)K

−1(xd, xd)
(
`(xd)− µ(xd)

)
,

and the posterior covariance is CD(x, x′) := K(x, x) − K(x, xd)K(xd, xd)
−1K(xd, x), where

D :=
{
xd, `(xd), θ

}
. For an extensive review of the GP literature and associated identities, see [11].

When a GP prior is placed directly on the integrand in this manner, the posterior mean and vari-
ance of the integral can be derived analytically through the use of Gaussian identities, as in
[10]. This is because the integration is a linear projection of the function posterior onto π(x),
and joint Gaussianity is preserved through any arbitrary affine transformation. The mean and
variance estimate of the integral are given as follows: E`|D

[
〈`〉
]
=
∫
mD(x)π(x) dx (2), and
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V`|D
[
〈`〉
]
=
∫∫

CD(x, x
′)π(x) dxπ(x′) dx′ (3). Both mean and variance are analytic when π(x)

is Gaussian, a mixture of Gaussians, or a polynomial (amongst other functional forms).

If the GP prior is placed directly on the likelihood in the style of traditional Bayes–Hermite quadra-
ture, the optimal point to add a sample (from an information gain perspective) is dependent only on
xd—the locations of the previously sampled points. This means that given a budget of N samples,
the most informative set of function evaluations is a design that can be pre-computed, completely un-
influenced by any information gleaned from function values [13]. In [12], where the log-likelihood
is modelled by a GP, a dependency is introduced between the uncertainty over the function at any
point and the function value at that point. This means that the optimal sample placement is now
directly influenced by the obtained function values.
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(a) Traditional Bayes–Hermite quadrature.
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(b) Square-root moment-matched Bayesian quadrature.

Figure 1: Figure 1a depicts the integrand as modelled directly by a GP, conditioned on 15 samples
selected on a grid over the domain. Figure 1b shows the moment matched approximation—note the
larger relative posterior variance in areas where the function is high. The linearised square-root GP
performed identically on this example, and is not shown.

An illustration of Bayes–Hermite quadrature is given in Figure 1a. Conditioned on a grid of 15
samples, it is visible that any sample located equidistant from two others is equally informative in
reducing our uncertainty about `(x). As the dimensionality of the space increases, exploration can
be increasingly difficult due to the curse of dimensionality. A better designed BQ strategy would
create a dependency structure between function value and informativeness of sample, in such a way
as to appropriately express prior bias towards exploitation of existing probability mass.

3 Square-Root Bayesian Quadrature

Crucially, likelihoods are non-negative, a fact neglected by traditional Bayes–Hermite quadrature. In
[12] the logarithm of the likelihood was modelled, and approximate the posterior of the integral, via
a linearisation trick. We choose a different member of the power transform family—the square-root.

The square-root transform halves the dynamic range of the function we model. This helps deal with
the large variations in likelihood observed in a typical model, and has the added benefit of extending
the autocorrelation range (or the input length-scale) of the GP, yielding improved predictive power
when extrapolating away from existing sample points.

Let ˜̀(x) :=
√
2
(
`(x)− α

)
, such that `(x) = α+ 1/2 ˜̀(x)2, where α is a small positive scalar.1 We

then take a GP prior on ˜̀(x): ˜̀∼ GP(0,K). We can then write the posterior for ˜̀as

p(˜̀ | D) = GP
(
˜̀; m̃D(·), C̃D(·, ·)

)
; (4)

m̃D(x) := K(x, xd)K(xd, xd)
−1 ˜̀(xd); (5)

C̃D(x, x
′) := K(x, x′)−K(x, xd)K(xd, xd)

−1K(xd, x
′). (6)

The square-root transformation renders analysis intractable with this GP: we arrive at a process
whose marginal distribution for any `(x) is a non-central χ2 (with one degree of freedom). Given
this process, the posterior for our integral is not closed-form. We now describe two alternative
approximation schemes to resolve this problem.

1α was taken as 0.8 ×min `(xd) in all experiments; our investigations found that performance was insen-
sitive to the choice of this parameter.
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3.1 Linearisation

We firstly consider a local linearisation of the transform f : ˜̀ 7→ ` = α + 1/2 ˜̀2. As GPs are closed
under linear transformations, this linearisation will ensure that we arrive at a GP for ` given our
existing GP on ˜̀. Generically, if we linearise around ˜̀

0, we have ` ' f(˜̀0) + f ′(˜̀0)(˜̀− ˜̀
0). Note

that f ′(˜̀) = ˜̀: this simple gradient is a further motivation for our transform, as described further in
Section 3.3. We choose ˜̀

0 = m̃D; this represents the mode of p(˜̀ | D). Hence we arrive at

`(x) '
(
α+ 1/2 m̃D(x)

2
)
+ m̃D(x)

(
˜̀(x)− m̃D(x)

)
= α− 1/2 m̃D(x)

2 + m̃D(x) ˜̀(x). (7)

Under this approximation, in which ` is a simple affine transformation of ˜̀, we have

p(` | D) ' GP
(
`;mLD(·), CLD(·, ·)

)
; (8)

mLD(x) := α+ 1/2 m̃D(x)
2; (9)

CLD(x, x
′) := m̃D(x)C̃D(x, x

′)m̃D(x
′). (10)

3.2 Moment Matching

Alternatively, we consider a moment-matching approximation: p(` | D) is approximated as a GP
with mean and covariance equal to those of the true χ2 (process) posterior. This gives p(` | D) :=
GP
(
`;mMD (·), CMD (·, ·)

)
, where

mMD (x) := α+ 1/2
(
m̃2
D(x) + C̃D(x, x)

)
; (11)

CMD (x, x′) := 1/2 C̃D(x, x
′)2 + m̃D(x)C̃D(x, x

′)m̃D(x
′). (12)

We will call these two approximations WSABI-L (for “linear”) and WSABI-M (for “moment
matched”), respectively. Figure 2 shows a comparison of the approximations on synthetic data.
The likelihood function, `(x), was defined to be `(x) = exp(−x2), and is plotted in red. We placed
a GP prior on ˜̀, and conditioned this on seven observations spanning the interval [−2, 2]. We then
drew 50 000 samples from the true χ2 posterior on ˜̀along a dense grid on the interval [−5, 5] and
used these to estimate the true density of `(x), shown in blue shading. Finally, we plot the means and
95% confidence intervals for the approximate posterior. Notice that the moment matching results in
a higher mean and variance far from observations, but otherwise the approximations largely agree
with each other and the true density.

3.3 Quadrature

m̃D and C̃D are both mixtures of un-normalised Gaussians K. As such, the expressions for poste-
rior mean and covariance under either the linearisation (mLD and CLD, respectively) or the moment-
matching approximations (mMD and CMD , respectively) are also mixtures of un-normalised Gaus-
sians. Substituting these expressions (under either approximation) into (2) and (3) yields closed-
form expressions (omitted due to their length) for the mean and variance of the integral 〈`〉. This
result motivated our initial choice of transform: for linearisation, for example, it was only the fact
that the gradient f ′(˜̀) = ˜̀ that rendered the covariance in (10) a mixture of un-normalised Gaus-
sians. The discussion that follows is equally applicable to either approximation.

It is clear that the posterior variance of the likelihood model is now a function of both the expected
value of the likelihood at that point, and the distance of that sample location from the rest of xd.
This is visualised in Figure 1b.

Comparing Figures 1a and 1b we see that conditioned on an identical set of samples, WSABI both
achieves a closer fit to the true underlying function, and associates minimal probability mass with
negative function values. These are desirable properties when modelling likelihood functions—both
arising from the use of the square-root transform.

4 Active Sampling

Given a full Bayesian model of the likelihood surface, it is natural to call on the framework of
Bayesian decision theory, selecting the next function evaluation so as to optimally reduce our uncer-
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Figure 2: The χ2 process, alongside moment matched (WSABI-M) and linearised approxi-
mations (WSABI-L). Notice that the WSABI-L mean is nearly identical to the ground truth.

tainty about either the total integrand surface or the integral. Let us define this next sample location
to be x∗, and the associated likelihood to be `∗ := `(x∗). Two utility functions immediately present
themselves as natural choices, which we consider below. Both options are appropriate for either of
the approximations to p(`) described above.

4.1 Minimizing expected entropy

One possibility would be to follow [12] in minimising the expected entropy of the integral, by
selecting x∗ = argmin

x

〈
V`|D,`(x)

[
〈`〉
]〉

, where〈
V`|D,`(x)

[
〈`〉
]〉

=

∫
V`|D,`(x)

[
〈`〉
]
N
(
`(x);mD(x), CD(x, x)

)
d`(x). (13)

4.2 Uncertainty sampling

Alternatively, we can target the reduction in entropy of the total integrand `(x)π(x) instead, by
targeting x∗ = argmax

x
V`|D

[
`(x)π(x)

]
(this is known as uncertainty sampling), where

VM`|D
[
`(x)π(x)

]
= π(x)CD(x, x)π(x) = π(x)2C̃D(x, x)

(
1/2 C̃D(x, x) + m̃D(x)

2
)
, (14)

in the case of our moment matched approximation, and, under the linearisation approximation,

VL`|D
[
`(x)π(x)

]
= π(x)2C̃D(x, x)m̃D(x)

2. (15)

The uncertainty sampling option reduces the entropy of our GP approximation to p(`) rather than
the true (intractable) distribution. The computation of either (14) or (15) is considerably cheaper
and more numerically stable than that of (13). Notice that as our model builds in greater uncertainty
in the likelihood where it is high, it will naturally balance sampling in entirely unexplored regions
against sampling in regions where the likelihood is expected to be high. Our model (the square-
root transform) is more suited to the use of uncertainty sampling than the model taken in [12].
This is because the approximation to the posterior variance is typically poorer for the extreme log-
transform than for the milder square-root transform. This means that, although the log-transform
would achieve greater reduction in dynamic range than any power transform, it would also introduce
the most error in approximating the posterior predictive variance of `(x). Hence, on balance, we
consider the square-root transform superior for our sampling scheme.

Figures 3–4 illustrate the result of square-root Bayesian quadrature, conditioned on 15 samples
selected sequentially under utility functions (14) and (15) respectively. In both cases the posterior
mean has not been scaled by the prior π(x) (but the variance has). This is intended to exaggerate the
contributions to the mean made by WSABI-M.

A good posterior estimate of the integral has been achieved, and this set of samples is more infor-
mative than a grid under the utility function of minimising the integral error. In all active-learning
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