NIPS Proceedingsβ

Active Regression by Stratification

Part of: Advances in Neural Information Processing Systems 27 (NIPS 2014)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We propose a new active learning algorithm for parametric linear regression with random design. We provide finite sample convergence guarantees for general distributions in the misspecified model. This is the first active learner for this setting that provably can improve over passive learning. Unlike other learning settings (such as classification), in regression the passive learning rate of O(1/epsilon) cannot in general be improved upon. Nonetheless, the so-called `constant' in the rate of convergence, which is characterized by a distribution-dependent risk, can be improved in many cases. For a given distribution, achieving the optimal risk requires prior knowledge of the distribution. Following the stratification technique advocated in Monte-Carlo function integration, our active learner approaches a the optimal risk using piecewise constant approximations.