NIPS Proceedingsβ

Near-optimal Reinforcement Learning in Factored MDPs

Part of: Advances in Neural Information Processing Systems 27 (NIPS 2014)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Spotlight


Any reinforcement learning algorithm that applies to all Markov decision processes (MDPs) will suffer $\Omega(\sqrt{SAT})$ regret on some MDP, where $T$ is the elapsed time and $S$ and $A$ are the cardinalities of the state and action spaces. This implies $T = \Omega(SA)$ time to guarantee a near-optimal policy. In many settings of practical interest, due to the curse of dimensionality, $S$ and $A$ can be so enormous that this learning time is unacceptable. We establish that, if the system is known to be a \emph{factored} MDP, it is possible to achieve regret that scales polynomially in the number of \emph{parameters} encoding the factored MDP, which may be exponentially smaller than $S$ or $A$. We provide two algorithms that satisfy near-optimal regret bounds in this context: posterior sampling reinforcement learning (PSRL) and an upper confidence bound algorithm (UCRL-Factored).