
Quantized Kernel Learning for Feature Matching

Danfeng Qin
ETH Zürich

Xuanli Chen
TU Munich

Matthieu Guillaumin
ETH Zürich

Luc Van Gool
ETH Zürich

{qind, guillaumin, vangool}@vision.ee.ethz.ch, xuanli.chen@tum.de

Abstract

Matching local visual features is a crucial problem in computer vision and its
accuracy greatly depends on the choice of similarity measure. As it is generally
very difficult to design by hand a similarity or a kernel perfectly adapted to the
data of interest, learning it automatically with as few assumptions as possible is
preferable. However, available techniques for kernel learning suffer from several
limitations, such as restrictive parametrization or scalability.
In this paper, we introduce a simple and flexible family of non-linear kernels
which we refer to as Quantized Kernels (QK). QKs are arbitrary kernels in the
index space of a data quantizer, i.e., piecewise constant similarities in the origi-
nal feature space. Quantization allows to compress features and keep the learning
tractable. As a result, we obtain state-of-the-art matching performance on a stan-
dard benchmark dataset with just a few bits to represent each feature dimension.
QKs also have explicit non-linear, low-dimensional feature mappings that grant
access to Euclidean geometry for uncompressed features.

1 Introduction
Matching local visual features is a core problem in computer vision with a vast range of applications
such as image registration [28], image alignment and stitching [6] and structure-from-motion [1].
To cope with the geometric transformations and photometric distorsions that images exhibit, many
robust feature descriptors have been proposed. In particular, histograms of oriented gradients such
as SIFT [15] have proved successful in many of the above tasks. Despite these results, they are
inherently limited by their design choices. Hence, we have witnessed an increasing amount of work
focusing on automatically learning visual descriptors from data via discriminative embeddings [11,
4] or hyper-parameter optimization [5, 21, 23, 22].

A dual aspect of visual description is the measure of visual (dis-)similarity, which is responsible
for deciding whether a pair of features matches or not. In image registration, retrieval and 3D
reconstruction, for instance, nearest neighbor search builds on such measures to establish point
correspondences. Thus, the choice of similarity or kernel impacts the performance of a system as
much as the choice of visual features [2, 16, 18]. Designing a good similarity measure for matching
is difficult and commonly used kernels such as the linear, intersection, χ2 and RBF kernels are not
ideal as their inherent properties (e.g., stationarity, homogeneity) may not fit the data well.

Existing techniques for automatically learning similarity measures suffer from different limitations.
Metric learning approaches [25] learn to project the data to a lower-dimensional and more discrim-
inative space where the Euclidean geometry can be used. However, these methods are inherently
linear. Multiple Kernel Learning (MKL) [3] is able to combine multiple base kernels in an optimal
way, but its complexity limits the amount of data that can be used and forces the user to pre-select
or design a small number of kernels that are likely to perform well. Additionally, the resulting ker-
nel may not be easily represented in a reasonably small Euclidean space. This is problematic, as
many efficient algorithms (e.g. approximate nearest neighbor techniques) heavily rely on Euclidean
geometry and have non-intuitive behavior in higher dimensions.

1



In this paper, we introduce a simple yet powerful family of kernels, Quantized Kernels (QK), which
(a) model non-linearities and heterogeneities in the data, (b) lead to compact representations that
can be easily decompressed into a reasonably-sized Euclidean space and (c) are efficient to learn so
that large-scale data can be exploited. In essence, we build on the fact that vector quantizers project
data into a finite set of N elements, the index space, and on the simple observation that kernels on
finite sets are fully specified by the N×N Gram matrix of these elements (the kernel matrix), which
we propose to learn directly. Thus, QKs are piecewise constant but otherwise arbitrary, making
them very flexible. Since the learnt kernel matrices are positive semi-definite, we directly obtain the
corresponding explicit feature mappings and exploit their potential low-rankness.

In the remainder of the paper, we first further discuss related work (Sec. 2), then present QKs in detail
(Sec. 3). As important contributions, we show how to efficiently learn the quantizer and the kernel
matrix so as to maximize the matching performance (Sec. 3.2), using an exact linear-time inference
subroutine (Sec. 3.3), and devise practical techniques for users to incorporate knowledge about the
structure of the data (Sec. 3.4) and reduce the number of parameters of the system. Our experiments
in Sec. 4 show that our kernels yield state-of-the-art performance on a standard feature matching
benchmark and improve over kernels used in the literature for several descriptors, including one
based on metric learning. Our compressed features are very compact, using only 1 to 4 bits per
dimension of the original features. For instance, on SIFT descriptors, our QK yields about 10%
improvement on matching compared to the dot product, while compressing features by a factor 8.

2 Related work
Our work relates to a vast literature on kernel selection and tuning, descriptor, similarity, distance
and kernel learning. We present a selection of such works below.
Basic kernels and kernel tuning. A common approach for choosing a kernel is to pick one from
the literature: dot product, Gaussian RBF, intersection [16], χ2, Hellinger, etc. These generic kernels
have been extensively studied [24] and have properties such as homogeneity or stationarity. These
properties may be inadequate for the data of interest and thus the kernels will not yield optimal
performance. Efficient yet approximate versions of such kernels [9, 20, 24] are similarly inadequate.
Descriptor learning. Early work on descriptor learning improved SIFT by exploring its parame-
ter space [26]. Later, automatic parameter selection was proposed with a non-convex objective [5].
Recently, significant improvements in local description for matching have been obtained by opti-
mizing feature encoding [4] and descriptor pooling [21, 23]. These works maximize the matching
performance directly via convex optimization [21] or boosting [23]. As we show in our experiments,
our approach improves matching even for such optimized descriptors.
Distance, similarity and kernel learning. Mahalanobis metrics (e.g., [25]) are probably the most
widely used family of (dis-)similarities in supervised settings. They extend the Euclidean metric
by accounting for correlations between input dimensions and are equivalent to projecting data to
a new, potentially smaller, Euclidean space. Learning the projection improves discrimination and
compresses feature vectors, but the projection is inherently linear.1 There are several attempts to
learn more powerful non-linear kernels from data. Multiple Kernel Learning (MKL) [3] operates
on a parametric family of kernels: it learns a convex combination of a few base kernels so as to
maximize classification accuracy. Recent advances now allow to combine thousands of kernels in
MKL [17] or exploit specialized families of kernels to derive faster algorithms [19]. In that work, the
authors combine binary base kernels based on randomized indicator functions but restricted them
to XNOR-like kernels. Our QK framework can also be seen as an efficient and robust MKL on
a specific family of binary base kernels. However, our binary base kernels originate from more
general quantizations: they correspond to their regions of constantness. As a consequence, the
resulting optimization problem is also more involves and thus calls for approximate solutions.

In parallel to MKL approaches, Non-Parametric Kernel Learning (NPKL) [10] has emerged as a
flexible kernel learning alternative. Without any assumption on the form of the kernel, these methods
aim at learning the Gram matrix of the data directly. The optimization problem is a semi-definite
program whose size is quadratic in the number of samples. Scalability is therefore an issue, and
approximation techniques must be used to compute the kernel on unobserved data. Like NPKL, we
learn the values of the kernel matrix directly. However, we do it in the index space instead of the

1Metric learning can be kernelized, but then one has to choose the kernel.

2



original space. Hence, we restrict our family of kernels to piecewise constant ones2, but, contrary to
NPKL, the complexity of the problems we solve does not grow with the number of data points but
with the refinement of the quantization and our kernels trivially generalize to unobserved inputs.

3 Quantized kernels
In this section, we present the framework of quantized kernels (QK). We start in Sec. 3.1 by defining
QKs and looking at some of their properties. We then present in Sec. 3.2 a general alternating
learning algorithm. A key step is to optimize the quantizer itself. We present in Sec. 3.3 our scheme
for quantization optimization for a single dimensional feature and how to generalize it to higher
dimensions in Sec. 3.4.

3.1 Definition and properties
Formally, quantized kernels QKDN are the set of kernels kq on RD×RD such that:

∃q : RD 7→ {1, . . . , N}, ∃K ∈ RN×N � 0, ∀x,y ∈ RD, kq(x,y) = K(q(x), q(y)), (1)

where q is a quantization function which projects x ∈ RD to the finite index space {1, . . . , N},
and K � 0 denotes that K is a positive semi-definite (PSD) matrix. As discussed above, quantized
kernels are an efficient parametrization of piecewise constant functions, where q defines the regions
of constantness. Moreover, the N×N matrix K is unique for a given choice of kq , as it simply
accounts for the N(N+1)/2 possible values of the kernel and is the Gram matrix of the N elements
of the index space. We can also see q as a 1-of-N coding feature map ϕq , such that:

kq(x,y) = K(q(x), q(y)) = ϕq(x)>Kϕq(y). (2)

The components of the matrix K fully parametrize the family of quantized kernels based on q, and
it is a PSD matrix if and only if kq is a PSD kernel. An explicit feature mapping of kq is easily
computed from the Cholesky decomposition of the PSD matrix K = P>P:

kq(x,y) = ϕq(x)>Kϕq(y) =
〈
ψP
q (x), ψP

q (y)
〉
, (3)

where ψP
q (x) = Pϕq(x). It is of particular interest to limit the rank N ′ ≤N of K, and hence the

number of rows in P. In their compressed form, vectors require only log2(N) bits of memory for
storing q(x) and they can be decompressed in RN ′

using Pϕq(x). Not only is this decompressed
vector smaller than one based on ϕq , but it is also associated with the Euclidean geometry rather than
the kernel one. This allows the exploitation of the large literature of efficient methods specialized to
Euclidean spaces.

3.2 Learning quantized kernels
In this section, we describe a general alternating algorithm to learn a quantized kernel kq for feature
matching. This problem can be formulated as quadruple-wise constraints of the following form:

kq(x,y) > kq(u,v), ∀(x,y) ∈ P, ∀(u,v) ∈ N , (4)

whereP denotes the set of positive feature pairs, andN is the negative one. The positive set contains
feature pairs that should be visually matched, while the negative pairs are mismatches.

We adopt a large-margin formulation of the above constraints using the trace-norm regularization
‖ · ‖∗ on K, which is the tightest convex surrogate to low-rank regularization [8]. Using M training
pairs {(xj ,yj)}j=1...M , we obtain the following optimization problem:

argmin
K�0, q∈QD

N

E(K, q) =
λ

2
‖K‖∗ +

M∑
j=1

max
(

0, 1− ljϕq(xj)
>Kϕq(yj)

)
, (5)

where QDN denotes the set of quantizers q : RD 7→ {1, . . . , N}, the pair label lj ∈ {−1, 1} denotes
whether the feature pair (xj ,yj) is in N or P respectively. The parameter λ controls the trade-off
between the regularization and the empirical loss. Solving Eq. (5) directly is intractable. We thus
propose to alternate between the optimization of K and q. We describe the former below, and the
latter in the next section.

2As any continuous function on an interval is the uniform limit of a series of piecewise constant functions,
this assumption does not inherently limit the flexibility of the family.

3



Optimizing K with fixed q. When fixing q in Eq. (5), the objective function becomes convex in
K but is not differentiable, so we resort to stochastic sub-gradient descent for optimization. Similar
to [21], we used Regularised Dual Averaging (RDA) [27] to optimize K iteratively. At iteration
t+ 1, the kernel matrix Kt+1 is updated with the following rule:

Kt+1 = Π

(
−
√
t

γ

(
Gt + λI

))
(6)

where γ > 0 and Gt = 1
t

∑t
t′=1 Gt′ is the rolling average of subgradients Gt′ of the loss computed

at step t′ from one sample pair. I is the identity matrix and Π is the projection onto the PSD cone.

3.3 Interval quantization optimization for a single dimension
To optimize an objective like Eq. (5) when K is fixed, we must consider how to design and
parametrize the elements of QDN . In this work, we adopt interval quantizers, and in this section
we assume D=1, i.e., restrict the study of quantization to R.
Interval quantizers. An interval quantizer q over R is defined by a set of N + 1 boundaries
bi ∈ R with b0 = −∞, bN = ∞ and q(x) = i if and only if bi−1 < x ≤ bi. Importantly, interval
quantizers are monotonous, x≤y ⇒ q(x)≤q(y), and boundaries bi can be set to any value between
maxq(x)=i x (included) and minq(x)=i+1 x (excluded). Therefore, Eq. (5) can be viewed as a data
labelling problem, where each value xj or yj takes a label in [1, N ], with a monotonicity constraint.

Thus, let us now consider the graph (V, E) where nodes V = {vt}t=1...2M represent the list of all
xj and yj in a sorted order and the edges E={(vs, vt)} connect all pairs (xj , yj). Then Eq. (5) with
fixed K is equivalent to the following discrete pairwise energy minimization problem:

argmin
q∈[1,N ]2M

E′(q) =
∑

(s,t)∈E

Est(q(vs), q(vt)) +

2M∑
t=2

Ct(q(vt−1), q(vt)), (7)

where Est(q(vs), q(vt)) = Ej(q(xj), q(yj)) = max (0, 1− ljK(q(xj), q(yj))) and Ct is ∞ for
q(vt) < q(vt−1) and 0 otherwise (i.e., it encodes the monotonicity of q in the sorted list of vt).

The optimization of Eq. (7) is an NP-hard problem as the energies Est are arbitrary and the graph
does not have a bounded treewidth, in general. Hence, we iterate the individual optimization of each
of the boundaries using an exact linear-time algorithm, which we present below.
Exact linear-time optimization of a binary interval quantizer. We now consider solving equa-
tions of the form of Eq. (7) for the binary label case (N = 2). The main observation is that the
monotonicity constraint means that labels are 1 until a certain node t and then 2 from node t + 1,
and this switch can occur only once on the entire sequence, where vt ≤ b1 < vt+1. This means
that there are only 2M+1 possible labellings and we can order them from (1, . . . , 1), (1, . . . , 1, 2)
to (2, . . . , 2). A naı̈ve algorithm consists in computing the 2M+1 energies explicitly. Since each
energy computation is linear in the number of edges, this results in a quadratic complexity overall.

A linear-time algorithm exist. It stems from the observation that the energies of two consecutive
labellings (e.g., switching the label of vt from 1 to 2) differ only by a constant number of terms:

E(q(vt−1)=1, q(vt)=2, q(vt+1)=2) = E(q(vt−1)=1, q(vt)=1, q(vt+1)=2)

+ Ct(1, 2)− Ct(1, 1) + Ct+1(2, 2)− Ct+1(1, 2) + Est(q(vs), 2)− Est(q(vs), 1) (8)

where, w.l.o.g., we have assumed (s, t) ∈ E . After finding the optimal labelling, i.e. finding the
label change (vt, vt+1), we set b1 =(vt+vt+1)/2 to obtain the best possible generalization.
Finite spaces. When the input feature space has a finite number of different values (e.g., x ∈
[1, T ]), then we can use linear-time sorting and merge all nodes with equal value in Eq. (7): this
results in considering at most T + 1 labellings, which is potentially much smaller than 2M + 1.
Extension to the multilabel case. Optimizing a single boundary bi of a multilabel interval quan-
tization is essentially the same binary problem as above, where we limit the optimization to the
values currently assigned to i and i + 1 and keep the other assignments q fixed. We use unaries
Ej(q(xj), q(yj)) or Ej(q(xj), q(yj)) to model half-fixed pairs for xj or yj , respectively.

3.4 Learning higher dimensional quantized kernels
We now want to generalize interval quantizers to higher dimensions. This is readily feasible via
product quantization [13], using interval quantizers for each individual dimension.

4



Interval product quantization. An interval product quantizer q(x) : RD 7→ {1, . . . , N} is of
the form q(x) = (q1(x1), . . . , qD(xD)), where q1, . . . , qD are interval quantizers with N1, . . . , ND
bins respectively, i.e., N =

∏D
d=1Nd. The learning algorithm devised above trivially generalizes

to interval product quantization by fixing all but one boundary of a single component quantizer qd.
However, learning K ∈ RN × RN when N is very large becomes problematic: not only does RDA
scale unfavourably, but the lack of training data will eventually lead to severe overfitting. To address
these issues, we devise below variants of QKs that have practical advantages for robust learning.
Additive quantized kernels (AQK). We can drastically reduce the number of parameters by re-
stricting product quantized kernels to additive ones, which consists in decomposing over dimensions:

kq(x,y) =

D∑
d=1

kqd(xd,yd) =

D∑
d=1

ϕqd(xd)
>Kdϕqd(yd) = ϕq(x)>Kϕq(y), (9)

where qd ∈ Q1
Nd

, ϕqd is the 1-of-Nd coding of dimension d, Kd is the Nd × Nd Gram matrix of
dimension d, ϕq is the concatenation of theD mappings ϕqd , and K is a (

∑
dNd)×(

∑
dNd) block-

diagonal matrix of K1, . . . ,KD. The benefits of AQK are twofold. First, the explicit feature space is
reduced from N =

∏
dNd to N ′ =

∑
dNd. Second, the number of parameters to learn in K is now

only
∑
dN

2
d instead of N2. The compression ratio is unchanged since log2(N) =

∑
d log2(Nd).

To learn K in Eq. (9), we simply set the off-block-diagonal elements of Gt′ to zero in each iteration,
and iteratively update K as describe in Sec. 3.2. To optimize a product quantizer, we iterate the
optimization of each 1d quantizer qd following Sec. 3.3, while fixing qc for c 6= d. This leads to
using the following energy Ej for a pair (xj ,yj):

Ej,d(qd(xj,d), qd(yj,d)) = max (0, µj,d − ljKd(qd(xj,d), qd(yj,d))) , (10)

where µj,d = 1− lj
∑
c6=dKc(qc(xc), qc(yc)) acts as an adaptive margin.

Block quantized kernels (BQK). Although the additive assumption in AQK greatly reduces the
number of parameters, it is also very restrictive, as it assumes independent data dimensions. A
simple way to extend additive quantized kernels to model the inter-dependencies of dimensions is
to allow the off-diagonal elements of K in Eq. (9) to be nonzero. As a trade-off between a block-
diagonal (AQK) and a full matrix, in this work we also consider the grouping of the feature dimen-
sions into B blocks, and only learn off-block-diagonal elements within each block, leading to Block
Quantized Kernels (BQK). In this way, assuming ∀d Nd = n, the number of parameters in K is
B times smaller than for the full matrix. As a matter of fact, many features such as SIFT descriptors
exhibit block structure. SIFT is composed of a 4×4 grid of 8 orientation bins. Components within
the same spatial cell correlate more strongly than others and, thus, only modeling those jointly may
prove sufficient. The optimization of K and q are straightforwardly adapted from the AQK case.

Additional parameter sharing. Commonly, the different dimensions of a descriptor are gen-
erated by the same procedure and hence share similar properties. This results in block matrices
K1, . . . ,KD in AQK that are quite similar as well. We propose to exploit this observation and share
the kernel matrix for groups of dimensions, further reducing the number of parameters. Specifically,
we cluster dimensions based on their variances into G equally sized groups and use a single block
matrix for each group. During optimization, dimensions sharing the same block matrix can con-
veniently be merged, i.e. ϕq(x) = [

∑
d s.t. Kd=K′

1
ϕqd(xd), . . . ,

∑
d s.t. Kd=K′

G
ϕqd(xd)], and then

K = diag(K′1, . . . ,K
′
G) is learnt following the procedure already described for AQK. Notably, the

quantizers themselves are not shared, so the kernel still adapts uniquely to every dimension of the
data, and the optimization of quantizers is not changed either. This parameter sharing strategy can
be readily applied to BQK as well.

4 Results
We now present our experimental results, starting with a description of our protocol. We then explore
parameters and properties of our kernels (optimization of quantizers, explicit feature maps). Finally,
we compare to the state-of-the-art in performance and compactness.
Dataset and evaluation protocol. We evaluate our method using the dataset of Brown et al. [5].
It contains three sets of patches extracted from Liberty, Notre Dame and Yosemite using the Differ-
ence of Gaussians (DoG) interest point detector. The patches are rectified with respect to the scale

5



Initial Optimized
Uniform 24.84 21.68
Adaptive 25.99 25.70
Adaptive+ 14.62 14.29

Table 1: Impact of quantization op-
timization for different quantization
strategies

2 6 10 14 1814

16

18

20

#intervals

FP
R

 @
 9

5%
 re

ca
ll 

[%
]

Figure 1: Impact ofN , the num-
ber of quantization intervals

1 2 3 48

10

12

14

16

#groups

FP
R

 @
 9

5%
 re

ca
ll 

[%
]

SIFT[15]

SQ-4-DAISY[4]

PR-proj[18]

Figure 2: Impact ofG, the num-
ber of dimension groups

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(a)

50 100 150 200 250

50

100

150

200

250

(b)
50 100 150 200 250−0.4

−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

(c)
50 100 150 200 250

−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

(d)

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(e)

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(f)

−0.08

−0.04

0

0.04

0.08
0.1

0.06

−0.06

−0.02

0.02

Figure 3: Our learned feature maps and additive quantized kernel of a single dimension. (a) shows the quan-
tized kernel in index space, while (b) is in the original feature space for the first quantizer. (c,d) show the two
corresponding feature maps, and (e,f) the related rank-1 kernels.

and dominant orientation, and pairwise correspondences are computed using a multi-view stereo
algorithm. In our experiments, we use the standard evaluation protocol [5] and state-of-the-art de-
scriptors: SIFT [15], PR-proj [21] and SQ-4-DAISY [4]. M=500k feature pairs are used for training
on each dataset, with as many positives as negatives. We report the false positive rate (FPR) at 95%
recall on the test set of 100k pairs. A challenge for this dataset is the bias in local patch appearance
for each set, so a key factor for performance is the ability to generalize and adapt across sets.

Below, in absence of other mention, AQKs are trained for SIFT on Yosemite and tested on Liberty.

Interval quantization and optimization. We first study the influence of initialization and opti-
mization on the generalization ability of the interval quantizers. For initialization, we have used two
different schemes: a) Uniform quantization, i.e. the quantization with equal intervals; b) Adaptive
quantization, i.e. the quantization with intervals with equal number of samples. In both cases, it
allows to learn a first kernel matrix, and we can then iterate with boundary optimization (Sec. 3.3).
Typically, convergence is very fast (2-3 iterations) and takes less than 5 minutes in total (i.e., about
2s per feature dimension) with 1M nodes. We see in Table 1 that uniform binning outperforms the
adaptive one and that further optimization benefits the uniform case more. This may seem paradox-
ical at first, but this is due to the train/test bias problem: intervals with equal number of samples
are very different across sets, so refinements will not transfer well. Hence, following [7], we first
normalize the features with respect to their rank, separately for the training and test sets. We refer to
this process as Adaptive+. As Table 1 shows, not only does it bring a significant improvement, but
further optimization of the quantization boundaries is more beneficial than for the Adaptive case. In
the following, we thus adopt this strategy.

Number of quantization intervals. In Fig. 1, we show the impact of the number of intervals N
of the quantizer on the matching accuracy, using a single shared kernel submatrix (G = 1). This
number balances the flexibility of the model and its compression ratio. As we can see, using too few
intervals limits the performance of QK, and using too many eventually leads to overfitting. The best
performance for SIFT is obtained with between 8 and 16 intervals.

Explicit feature maps. Fig. 3a shows the additive quantized kernel learnt for SIFT with N = 8
and G= 1. Interestingly, the kernel has negative values far from the diagonal and positive values
near the diagonal. This is typical of stationary kernels: when both features have similar values,
they contribute more to the similarity. However, contrary to stationary kernels, diagonal elements
are far from being constant. There is a mode on small values and another one on large ones. The
second one is stronger: i.e., the co-occurrence of large values yields greater similarity. This is con-
sistent with the voting nature of SIFT descriptors, where strong feature presences are both rarer and
more informative than their absences. The negative values far from the diagonal actually penalize
inconsistent observations, thus confirming existing results [12]. Looking at the values in the origi-
nal space in Fig. 3b, we see that the quantizer has learnt that fine intervals are needed in the lower

6



Descriptor Kernel Dimensionality Train on Yosemite Train on Notredame Mean

Notredame Liberty Yosemite Liberty

SIFT[15] Euclidean 128 24.02 31.34 27.96 31.34 28.66
SIFT[15] χ2 128 17.65 22.84 23.50 22.84 21.71
SIFT[15] AQK(8) 128 10.72 16.90 10.72 16.85 13.80
SIFT[15] AQK(8) 256 9.26 14.48 10.16 14.43 12.08
SIFT[15] BQK(8) 256 8.05 13.31 9.88 13.16 11.10

SQ-4-DAISY [4] Euclidean 1360 10.08 16.90 10.47 16.90 13.58
SQ-4-DAISY [4] χ2 1360 10.61 16.25 12.19 16.25 13.82
SQ-4-DAISY [4] SQ [4] 1360 8.42 15.58 9.25 15.58 12.21
SQ-4-DAISY [4] AQK(8) ≤1813 4.96 9.41 5.60 9.77 7.43

PR-proj [21] Euclidean[21] <64 7.11 14.82 10.54 12.88 11.34
PR-proj [21] AQK(16) ≤102 5.41 10.90 7.65 10.54 8.63

Table 2: Performance of kernels on different datasets with different descriptors. AQK(N) denotes the additive
quantized kernel with N quantization intervals. Following [6], we report the False positive rate (%) at 95%
recall. The best results for each descriptor are in bold.

values, while larger ones are enough for larger values. This is consistent with previous observations
that the contribution of large values in SIFT should not grow proportionally [2, 18, 14].

In this experiment, the learnt kernel has rank 2. We show in Fig. 3c, 3d, 3e and 3f the corresponding
feature mappings and their associated rank 1 kernels. The map for the largest eigenvalue (Fig. 3c)
is monotonous but starts with negative values. This impacts dot product significantly, and accounts
for the above observation that negative similarities occur when inputs disagree. This rank 1 kernel
cannot allot enough contribution to similar mid-range values. This is compensated by the second
rank (Fig. 3f).
Number of groups. Fig. 2 now shows the influence of the number of groups G on performance,
for the three different descriptors (N = 8 for SIFT and SQ-4-DAISY, N = 16 for PR-proj). As for
intervals, using more groups adds flexibility to the model, but as less data is available to learn each
parameter, over-fitting will hurt performance. We choose G = 3 for the rest of the experiments.
Comparison to the state of the art. Table 2 reports the matching performance of different kernels
using different descriptors, for all sets, as well as the dimensionality of the corresponding explicit
feature maps. For all three descriptors and on all sets, our quantized kernels significantly and con-
sistently outperform the best reported result in the literature. Indeed, AQK improves the mean error
rate at 95% recall from 28.66% to 12.08% for SIFT, from 13.58% to 7.43% for SQ-4-DAISY and
from 11.34% to 8.63% for PR-proj compared to the Euclidean distance, and about as much for the
χ2 kernel. Note that PR-proj already integrates metric learning in its design ([21] thus recommends
using the Euclidean distance): as a consequence our experiments show that modelling non-linearities
can bring significant improvements. When comparing to sparse quantization (SQ) with hamming
distance as done in [4], the error is significantly reduced from 12.21% to 7.43%. This is a notable
achievement considering that [4] is the previous state of the art.

The SIFT descriptor has a grid block design which makes it particularly suited for the use of BQK.
Hence, we also evaluated our BQK variant for that descriptor. With BQK(8), we observed a relative
improvement of 8%, from 12.08% for AQK(8) to 11.1%.

We provide in Fig. 4 the ROC curves for the three descriptors when training on Yosemite and testing
on Notre Dame and Liberty. These figures show that the improvement in recall is consistent over the
full range of false positive rates. For further comparisons, our data and code are available online.3

Compactness of our kernels. In many applications of feature matching, the compactness of the
descriptor is important. In Table 3, we compare to other methods by grouping them according to
their memory footprint. As a reference, the best method reported in Table 2 (AQK(8) on SQ-4-
DAISY) uses 4080 bits per descriptor. As expected, error rates increase as fewer bits are used, the
original features being significantly altered. Notably, QKs consistently yield the best performance in
all groups. Even with a crude binary quantization of SQ-4-DAISY, our quantized kernel outperform
the state-of-the-art SQ of [4] by 3 to 4%. When considering the most compact encodings (≤ 64 bits),
our AQK(2) does not improve over BinBoost [22], a descriptor designed for extreme compactness, or
the product quantization (PQ [13]) encoding as used in [21]. This is because our current framework
does not yet allow for joint compression of multiple dimensions. Hence, it is unable to use less

3See: http://www.vision.ee.ethz.ch/˜qind/QuantizedKernel.html

7

http://www.vision.ee.ethz.ch/~qind/QuantizedKernel.html


0 5 10 15 20 25 30
70

75

80

85

90

95

100

False Positive Rate [%]

Tr
ue

 P
os

iti
ve

 R
at

e 
[%

]

SIFT

BQK(8)
AQK(8)
AQK(2)
L2

Figure 4: ROC curves when evaluating Notre Dame (top) and Liberty (bottom) from Yosemite

Descriptor Encoding Memory (bits) Train on Yosemite Train on Notredame Mean

Notredame Liberty Yosemite Liberty

SQ-4-DAISY [4] SQ [4] 1360 8.42 15.58 9.25 15.58 12.21
SQ-4-DAISY [4] AQK(2) 1360 5.86 10.81 6.36 10.94 8.49

SIFT[15] AQK(8) 384 9.26 14.48 10.16 14.43 12.08
PR-proj [21] Bin [21] 1024 7.09 15.15 8.5 12.16 10.73
PR-proj [21] AQK(16) <256 5.41 10.90 7.65 10.54 8.63

SIFT[15] AQK(2) 128 14.62 19.72 15.65 19.45 17.36
PR-proj [21] Bin [21] 128 10.00 18.64 13.41 16.39 14.61
PR-proj [21] AQK(4) <128 7.18 13.02 10.29 13.18 10.92

BinBoost[22] BinBoost[22] 64 14.54 21.67 18.97 20.49 18.92
PR-proj [21] AQK(2) <64 14.80 20.59 19.38 22.24 19.26
PR-proj [21] PQ [21] 64 12.91 20.15 19.32 17.97 17.59
PR-proj [21] PCA+AQK(4) 64 10.74 17.46 14.44 17.60 15.06

Table 3: Performance comparison of different compact feature encoding. The number in the table is
reported as False positive rate (%) at 95% recall. The best results for each group are in bold.

than 1 bit per original dimension, and is not optimal in that case. To better understand the potential
benefits of decorrelating features and joint compression in future work, we pre-processed the data
with PCA, projecting to 32 dimensions and then using AQK(4). This simple procedure obtained
state-of-the-art performance with 15% error rate, now outperforming [22] and [21].

Although QKs yield very compact descriptors and achieve the best performance across many ex-
perimental setups, the computation of similarity values is slower than for competitors: in the binary
case, we double the complexity of hamming distance for the 2× 2 table look-up.

5 Conclusion
In this paper, we have introduced the simple yet powerful family of quantized kernels (QK), and
presented an efficient algorithm to learn its parameters, i.e. the kernel matrix and the quantization
boundaries. Despite their apparent simplicity, QKs have numerous advantages: they are very flex-
ible, can model non-linearities in the data and provide explicit low-dimensional feature mappings
that grant access to the Euclidean geometry. Above all, they achieve state-of-the-art performance
on the main visual feature matching benchmark. We think that QKs have a lot of potential for fur-
ther improvements. In future work, we want to explore new learning algorithms to obtain higher
compression ratios – e.g. by jointly compressing feature dimensions – and find the weight sharing
patterns that would further improve the matching performance automatically.

Acknowledgements

We gratefully thank the KIC-Climate project Modeling City Systems.

8




