NIPS Proceedingsβ

Orbit Regularization

Part of: Advances in Neural Information Processing Systems 27 (NIPS 2014)

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We propose a general framework for regularization based on group majorization. In this framework, a group is defined to act on the parameter space and an orbit is fixed; to control complexity, the model parameters are confined to lie in the convex hull of this orbit (the orbitope). Common regularizers are recovered as particular cases, and a connection is revealed between the recent sorted 1 -norm and the hyperoctahedral group. We derive the properties a group must satisfy for being amenable to optimization with conditional and projected gradient algorithms. Finally, we suggest a continuation strategy for orbit exploration, presenting simulation results for the symmetric and hyperoctahedral groups.