NIPS Proceedingsβ

Searching for Higgs Boson Decay Modes with Deep Learning

Part of: Advances in Neural Information Processing Systems 27 (NIPS 2014)

[PDF] [BibTeX] [Reviews]

Authors

Conference Event Type: Spotlight

Abstract

Particle colliders enable us to probe the fundamental nature of matter by observing exotic particles produced by high-energy collisions. Because the experimental measurements from these collisions are necessarily incomplete and imprecise, machine learning algorithms play a major role in the analysis of experimental data. The high-energy physics community typically relies on standardized machine learning software packages for this analysis, and devotes substantial effort towards improving statistical power by hand crafting high-level features derived from the raw collider measurements. In this paper, we train artificial neural networks to detect the decay of the Higgs boson to tau leptons on a dataset of 82 million simulated collision events. We demonstrate that deep neural network architectures are particularly well-suited for this task with the ability to automatically discover high-level features from the data and increase discovery significance.