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Abstract

Traditional convolutional neural networks (CNN) are stationary and feedforward.
They neither change their parameters during evaluation nor use feedback from
higher to lower layers. Real brains, however, do. So does our Deep Attention
Selective Network (dasNet) architecture. DasNet’s feedback structure can dy-
namically alter its convolutional filter sensitivities during classification. It har-
nesses the power of sequential processing to improve classification performance,
by allowing the network to iteratively focus its internal attention on some of its
convolutional filters. Feedback is trained through direct policy search in a huge
million-dimensional parameter space, through scalable natural evolution strate-
gies (SNES). On the CIFAR-10 and CIFAR-100 datasets, dasNet outperforms the
previous state-of-the-art model on unaugmented datasets.

1 Introduction

Deep convolutional neural networks (CNNs) [1] with max-pooling layers [2] trained by backprop
[3] on GPUs [4] have become the state-of-the-art in object recognition [5, 6, 7, 8], segmenta-
tion/detection [9, 10], and scene parsing [11, 12] (for an extensive review see [13]). These ar-
chitectures consist of many stacked feedforward layers, mimicking the bottom-up path of the human
visual cortex, where each layer learns progressively more abstract representations of the input data.
Low-level stages tend to learn biologically plausible feature detectors, such as Gabor filters [14].
Detectors in higher layers learn to respond to concrete visual objects or their parts, e.g., [15]. Once
trained, the CNN never changes its weights or filters during evaluation.

Evolution has discovered efficient feedforward pathways for recognizing certain objects in the blink
of an eye. However, an expert ornithologist, asked to classify a bird belonging to one of two very
similar species, may have to think for more than a few milliseconds before answering [16, 17],
implying that several feedforward evaluations are performed, where each evaluation tries to elicit
different information from the image. Since humans benefit greatly from this strategy, we hypoth-
esise CNNs can too. This requires: (1) the formulation of a non-stationary CNN that can adapt its
own behaviour post-training, and (2) a process that decides how to adapt the CNNs behaviour.

This paper introduces Deep Attention Selective Networks (dasNet) which model selective attention
in deep CNNs by allowing each layer to influence all other layers on successive passes over an image
through special connections (both bottom-up and top-down), that modulate the activity of the convo-
lutional filters. The weights of these special connections implement a control policy that is learned
through reinforcement learning after the CNN has been trained in the usual way via supervised
learning. Given an input image, the attentional policy can enhance or suppress features over mul-
tiple passes to improve the classification of difficult cases not captured by the initially supervised
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training. Our aim is to let the system check the usefulness of internal CNN filters automatically,
omitting manual inspection [18].

In our current implementation, the attentional policy is evolved using Separable Natural Evolution
Strategies (SNES; [19]), instead of a conventional, single agent reinforcement learning method
(e.g. value iteration, temporal difference, policy gradients, etc.) due to the large number of param-
eters (over 1 million) required to control CNNs of the size typically used in image classification.
Experiments on CIFAR-10 and CIFAR100 [20] show that on difficult classification instances, the
network corrects itself by emphasising and de-emphasising certain filters, outperforming a previous
state-of-the-art CNN.

2 Maxout Networks

In this work we use the Maxout networks [7], combined with dropout [21], as the underlying model
for dasNet. Maxout networks represent the state-of-the-art for object recognition in various tasks and
have only been outperformed (by a small margin) by averaging committees of several convolutional
neural networks. A similar approach, which does not reduce dimensionality in favor of sparsity
in the representation has also been recently presented [22]. Maxout CNNs consist of a stack of
alternating convolutional and maxout layers, with a final classification layer on top:

Convolutional Layer. The input to this layer can be an image or the output of a previous layer,
consisting of c input maps of width m and height n: x ∈ Rc×m×n. The output consists of a set of c′

output maps: y ∈ Rc′×m′×n′
. The convolutional layer is parameterised by c · c′ filters of size k× k.

We denote the filters by F ℓ
i,j ∈ Rk×k, where i and j are indexes of the input and output maps and ℓ

denotes the layer.

yℓj =

i=c∑
i=0

ϕ(xi ∗ F ℓ
i,j) (1)

where i and j index the input and output map respectively, ∗ is the convolutional operator, ϕ is an
element-wise nonlinear function, and ℓ is used to index the layer. The size of the output is determined
by the kernel size and the stride used for the convolution (see [7]).

Pooling Layer. A pooling layer is used to reduced the dimensionality of the output from a convolu-
tional layer. The usual approach is to take the maximum value among non- or partially-overlapping
patches in every map, therefore reducing dimensionality along the height and width [2]. Instead, a
Maxout pooling layer reduces every b consecutive maps to one map, by keeping only the maximum
value for every pixel-position, where b is called the block size. Thus the map reduces c input maps
to c′ = c/b output maps.

yℓj,x,y =
b

max
i=0

yℓ−1
j·b+i,x,y (2)

where yℓ ∈ Rc′×m′×n′
, and ℓ again is used to index the layer. The output of the pooling layer can

either be used as input to another pair of convolutional- and pooling layers, or form input to a final
classification layer.

Classification Layer. Finally, a classification step is performed. First the output of the last pooling
layer is flattened into one large vector x⃗, to form the input to the following equations:

ȳℓj = max
i=0..b

F ℓ
j·b+ix⃗ (3)

v = σ(F ℓ+1ȳℓ) (4)

where F ℓ ∈ RN×|x⃗| (N is chosen), and σ(·) is the softmax activation function which produces the
class probabilities v. The input is projected by F and then reduced using a maxout, similar to the
pooling layer (3).
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3 Reinforcement Learning

Reinforcement learning (RL) is a general framework for learning to make sequential decisions order
to maximise an external reward signal [23, 24]. The learning agent can be anything that has the
ability to act and perceive in a given environment.

At time t, the agent receives an observation ot ∈ O of the current state of the environment st ∈ S,
and selects an action, at ∈ A, chosen by a policy π : O → A, where S,O and A the spaces
of all possible states, observations, and action, respectively.1 The agent then enters state st+1 and
receives a reward rt ∈ R. The objective is to find the policy, π, that maximises the expected future
discounted reward, E[

∑
t γ

trt], where γ ∈ [0, 1] discounts the future, modeling the “farsightedness”
of the agent.

In dasNet, both the observation and action spaces are real valued O = Rdim(O), A = Rdim(A).
Therefore, policy πθ must be represented by a function approximator, e.g. a neural network, pa-
rameterised by θ. Because the policies used to control the attention of the dasNet have state and
actions spaces of close to a thousand dimensions, the policy parameter vector, θ, will contain close
to a million weights, which is impractical for standard RL methods. Therefore, we instead evolve
the policy using a variant for Natural Evolution Strategies (NES; [25, 26]), called Separable NES
(SNES; [19]). The NES family of black-box optimization algorithms use parameterised probability
distributions over the search space, instead of an explicit population (i.e., a conventional ES [27]).
Typically, the distribution is a multivariate Gaussian parameterised by mean µ and covariance matrix
Σ. Each epoch a generation is sampled from the distribution, which is then updated the direction
of the natural gradient of the expected fitness of the distribution. SNES differs from standard NES
in that instead of maintaining the full covariance matrix of the search distribution, uses only the
diagonal entries. SNES is theoretically less powerful than standard NES, but is substantially more
efficient.

4 Deep Attention Selective Networks (dasNet)

The idea behind dasNet is to harness the power of sequential processing to improve classification
performance by allowing the network to iteratively focus the attention of its filters. First, the standard
Maxout net (see Section 2) is augmented to allow the filters to be weighted differently on different
passes over the same image (compare to equation 1):

yℓj = aℓj

i=c∑
i=0

ϕ(xi ∗ F ℓ
i,j), (5)

where aℓj is the weight of the j-th output map in layer ℓ, changing the strength of its activation,
before applying the maxout pooling operator. The vector a = [a00, a

0
1, · · · , a0c′ , a10, · · · , a1c′ , · · · ]

represents the action that the learned policy must select in order to sequentially focus the attention
of the Maxout net on the most discriminative features in the image being processed. Changing action
a will alter the behaviour of the CNN, resulting in different outputs, even when the image x does
not change. We indicate this with the following notation:

vt = Mt(θ, x) (6)

where θ is the parameter vector of the policy, πθ, and vt is the output of the network on pass t.
Algorithm 1 describes the dasNet training algorithm. Given a Maxout net, M, that has already
been trained to classify images using training set, X, the policy, π, is evolved using SNES to focus
the attention of M. Each pass through the while loop represents one generation of SNES. Each
generation starts by selecting a subset of n images from X at random.

Then each of the p samples drawn from the SNES search distribution (with mean µ and covariance
Σ) representing the parameters, θi, of a candidate policy, πθi , undergoes n trials, one for each image
in the batch. During a trial, the image is presented to the Maxout net T times. In the first pass, t = 0,
the action, a0, is set to ai = 1, ∀i, so that the Maxout network functions as it would normally —

1In this work π : O → A is a deterministic policy; given an observation it will always output the same
action. However, π could be extended to stochastic policies.
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Algorithm 1 TRAIN DASNET (M, µ, Σ, p, n)

1: while True do
2: images ⇐ NEXTBATCH(n)
3: for i = 0 → p do
4: θi ∼ N(µ,Σ)
5: for j = 0 → n do
6: a0 ⇐ 1 {Initialise gates a with identity activation}
7: for t = 0 → T do
8: vt = Mt(θi, xi)
9: ot ⇐ h(Mt)

10: at+1 ⇐ πθi(ot)
11: end for
12: Li = −λboostd log(vT )
13: end for
14: F [i] ⇐ f(θi)
15: Θ[i] ⇐ θi
16: end for
17: UPDATESNES(F , Θ) {Details in supplementary material.}
18: end while

the action has no effect. Once the image is propagated through the net, an observation vector, o0, is
constructed by concatenating the following values extracted from M, by h(·):

1. the average activation of every output map Avg(yj) (Equation 2), of each Maxout layer.
2. the intermediate activations ȳj of the classification layer.
3. the class probability vector, vt.

While averaging map activations provides only partial state information, these values should still be
meaningful enough to allow for the selection of good actions. The candidate policy then maps the
observation to an action:

πθi(o) = dim(A)σ(θiot) = at, (7)

where θ ∈ Rdim(A)×dim(O) is the weight matrix of the neural network, and σ is the softmax. Note
that the softmax function is scaled by the dimensionality of the action space so that elements in the
action vector average to 1 (instead of regular softmax which sums to 1), ensuring that all network
outputs are positive, thereby keeping the filter activations stable.

On the next pass, the same image is processed again, but this time using the filter weighting, a1.
This cycle is repeated until pass T (see figure 1 for a illustration of the process), at which time the
performance of the network is scored by:

Li = −λboostd log(vT ) (8)
vT = MT (θi, xi) (9)

λboost =

{
λcorrect if d = ∥vT ∥∞
λmisclassified otherwise,

(10)

where v is the output of M at the end of the pass T , d is the correct classification, and λcorrect

and λmisclassified are constants. Li measures the weighted loss, where misclassified samples are
weighted higher than correctly classified samples λmisclassified > λcorrect. This simple form of
boosting is used to focus on the ‘difficult’ misclassified images. Once all of the input images have
been processed, the policy is assigned the fitness:

f(θi) =

cumulative score︷ ︸︸ ︷
n∑

i=1

Li +

regularization︷ ︸︸ ︷
λL2∥θi∥2 (11)
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Figure 1: The dasNet Network. Each image in classified after T passes through the network. After each for-
ward propagation through the Maxout net, the output classification vector, the output of the second to last layer,
and the averages of all feature maps, are combined into an observation vector that is used by a deterministic
policy to choose an action that changes the weights of all the feature maps for the next pass of the same image.
After pass T , the output of the Maxout net is finally used to classify the image.

where λL2 is a regularization parameter. Once all of the candidate policies have been evaluated,
SNES updates its distribution parameters (µ,Σ) according the natural gradient calculated from the
sampled fitness values, F . As SNES repeatedly updates the distribution over the course of many
generations, the expected fitness of the distribution improves, until the stopping criterion is met
when no improvement is made for several consecutive epochs.

5 Related Work

Human vision is still the most advanced and flexible perceptual system known. Architecturally,
visual cortex areas are highly connected, including direct connections over multiple levels and top-
down connections. Felleman and Essen [28] constructed a (now famous) hierarchy diagram of
32 different visual cortical areas in macaque visual cortex. About 40% of all pairs of areas were
considered connected, and most connected areas were connected bidirectionally. The top-down
connections are more numerous than bottom-up connections, and generally more diffuse [29]. They
are thought to play primarily a modulatory role, while feedforward connections serve as directed
information carriers [30].

Analysis of response latencies to a newly-presented image lends credence to the theory that there are
two stages of visual processing: a fast, pre-attentive phase, due to feedforward processing, followed
by an attentional phase, due to the influence of recurrent processing [31]. After the feedforward pass,
we can recognise and localise simple salient stimuli, which can “pop-out” [32], and response times
do not increase regardless of the number of distractors. However, this effect has only been conclu-
sively shown for basic features such as colour or orientation; for categorical stimuli or faces, whether
there is a pop-out effect remains controversial [33]. Regarding the attentional phase, feedback con-
nections are known to play important roles, such as in feature grouping [34], in differentiating a
foreground from its background, (especially when the foreground is not highly salient [35]), and
perceptual filling in [36]. Work by Bar et al. [37] supports the idea that top-down projections from
prefrontal cortex play an important role in object recognition by quickly extracting low-level spatial
frequency information to provide an initial guess about potential categories, forming a top-down
expectation that biases recognition. Recurrent connections seem to rely heavily on competitive in-
hibition and other feedback to make object recognition more robust [38, 39].

In the context of computer vision, RL has been shown to be able to learn saccades in visual scenes
to learn selective attention [40, 41], learn feedback to lower levels [42, 43], and improve face recog-
nition [44, 45]. It has been shown to be effective for object recognition [46], and has also been
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Table 1: Classification results on CIFAR-10 and CIFAR-100
datasets. The error on the test-set is shown for several meth-
ods. Note that the result for Dropconnect is the average of
12 models. Our method improves over the state-of-the-art
reference implementation to which feedback connections are
added. The recent Network in Network architecture [8] has
better results when data-augmentation is applied.

Method CIFAR-10 CIFAR-100
Dropconnect [51] 9.32% -
Stochastic Pooling [52] 15.13% -
Multi-column CNN [5] 11.21% -
Maxout [7] 9.38% 38.57%
Maxout (trained by us) 9.61% 34.54%
dasNet 9.22% 33.78%
NiN [8] 10.41% 35.68%
NiN (augmented) 8.81% -
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Figure 2: Two dasNets were trained on
CIFAR-100 for different values of T . Then
they were allowed to run for [0..9] iter-
ations for each image. The performance
peeks at the number of steps that the net-
work is trained on, after which the perfor-
mance drops, but does not explode, showing
the dynamics are stable.

combined with traditional computer vision primitives [47]. Iterative processing of images using
recurrency has been successfully used for image reconstruction [48], face-localization [49] and
compression [50]. All these approaches show that recurrency in processing and an RL perspec-
tive can lead to novel algorithms that improve performance. However, this research is often ap-
plied to simplified datasets for demonstration purposes due to computation constraints, and are not
aimed at improving the state-of-the-art. In contrast, we apply this perspective directly to the known
state-of-the-art neural networks to show that this approach is now feasible and actually increases
performance.

6 Experiments on CIFAR-10/100

The experimental evaluation of dasNet focuses on ambiguous classification cases in the CIFAR-10
and CIFAR-100 data sets where, due to a high number of common features, two classes are often
mistaken for each other. These are the most interesting cases for our approach. By learning on top of
an already trained model, dasNet must aim at fixing these erroneous predictions without disrupting,
or forgetting, what has been learned. The CIFAR-10 dataset [20] is composed of 32 × 32 colour
images split into 5×104 training and 104 testing samples, where each image is assigned to one of 10
classes. The CIFAR-100 is similarly composed, but contains 100 classes. The number of steps was
experimentally determined and fixed at T = 5; small enough to be computationally tractable while
still allowing for enough interaction. In all experiments we set λcorrect = 0.005, λmisclassified = 1 and
λL2 = 0.005.

The Maxout network, M, was trained with data augmentation following global contrast normaliza-
tion and ZCA normalization. The model consists of three convolutional maxout layers followed by
a fully connected maxout and softmax outputs. Dropout of 0.5 was used in all layers except the
input layer, and 0.2 for the input layer. The population size for SNES was set to 50. Training took
of dasNet took around 4 days on a GTX 560 Ti GPU, excluding the original time used to train M.

Table 1 shows the performance of dasNet vs. other methods, where it achieves a relative improve-
ment of 6% with respect to the vanilla CNN. This establishes a new state-of-the-art result for this
challenging dataset, for unaugmented data. Figure 3 shows the classification of a cat-image from the
test-set. All output map activations in the final step are shown at the top. The difference in activa-
tions compared to the first step, i.e., the (de-)emphasis of each map, is shown on the bottom. On the
left are the class probabilities for each time-step. At the first step, the classification is ‘dog’, and the
cat could indeed be mistaken for a puppy. Note that in the first step, the network has not yet received
any feedback. In the next step, the probability for ‘cat’ goes up dramatically, and subsequently drops
a bit in the following steps. The network has successfully disambiguated a cat from a dog. If we
investigate the filters, we see that in the lower layer emphasis changes significantly (see ‘change
of layer 0’). Some filters focus more on surroundings whilst others de-emphasise the eyes. In the
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Figure 3: The classification of a cat by the dasNet is shown. All output map activations in the final step
are shown on the top. Their changes relative to initial activations in the first step are shown at the bottom
(white = emphasis, black = suppression). The changes are normalised to show the effects more clearly. The
class probabilities over time are shown on the left. The network first classifies the image as a dog (wrong)
but corrects itself by emphasising its convolutional filters to see it is actually a cat. Two more examples are
included in the supplementary material.

second layer, almost all output maps are emphasised. In the third and highest convolutional layer,
the most complex changes to the network can be seen. At this level the positional correspondence
is largely lost, and the filters are known to code for ‘higher level’ features. It is in this layer that
changes are the most influential because they are closest to the final output layers.

It is hard to qualitatively analyze the effect of the alterations. If we compare each final activation in
layer 2 to its corresponding change (see Figure 3, right), we see that the activations are not simply
uniformly enhanced. Instead, complex suppression and enhancement patterns are found, increasing
and decreasing activation of specific pixels. Visualising what these high-level actually do is an open
problem in deep learning.

Dynamics To investigate the dynamics, a small 2-layer dasNet network was trained for different
values of T . Then they were evaluated by allowing them to run for [0..9] steps. Figure 2 shows
results of training dasNet on CIFAR-100 for T = 1 and T = 2. The performance goes up from the
vanilla CNN, peaks at the step = T as expected, and reduces but stays stable after that. So even
though the dasNet was trained using only a small number of steps, the dynamics stay stable when
these are evaluated for as many as 10 steps.

To verify whether the dasNet policy is actually making good use of its gates, we estimate their
information content in the following way: The gate values in the final step are used directly for
classification. The hypothesis is that if the gates are used properly, then their activation should
contain information that is relevant for classification. For this purpose, a dasNet that was trained with
T = 2. Then using only the final gate-values (so without e.g. the output of the classification layer),
a classification using 15-nearest neighbour and logistic regression was performed. This resulted in
a performance of 40.70% and 45.74% correct respectively, similar to the performance of dasNet,
confirming that they contain significant information.

7 Conclusion

DasNet is a deep neural network with feedback connections that are learned by through reinforce-
ment learning to direct selective internal attention to certain features extracted from images. After
a rapid first shot image classification through a standard stack of feedforward filters, the feedback
can actively alter the importance of certain filters “in hindsight”, correcting the initial guess via
additional internal “thoughts”.

7



DasNet successfully learned to correct image misclassifications produced by a fully trained feedfor-
ward Maxout network. Its active, selective, internal spotlight of attention enabled state-of-the-art
results. Future research will also consider more complex actions that spatially focus on (or alter)
parts of observed images.
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