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Abstract

The problem of estimating the kernel mean in a reproducing kernel Hilbert space
(RKHS) is central to kernel methods in that it is used by classical approaches (e.g.,
when centering a kernel PCA matrix), and it also forms the core inference step of
modern kernel methods (e.g., kernel-based non-parametrictests) that rely on em-
bedding probability distributions in RKHSs. Previous work[1] has shown that
shrinkage can help in constructing “better” estimators of the kernel mean than the
empirical estimator. The present paper studies the consistency and admissibility
of the estimators in [1], and proposes a wider class of shrinkage estimators that
improve upon the empirical estimator by considering appropriate basis functions.
Using the kernel PCA basis, we show that some of these estimators can be con-
structed using spectral filtering algorithms which are shown to be consistent under
some technical assumptions. Our theoretical analysis alsoreveals a fundamental
connection to the kernel-based supervised learning framework. The proposed es-
timators are simple to implement and perform well in practice.

1 Introduction

The kernel mean or the mean element, which corresponds to themean of the kernel function in a
reproducing kernel Hilbert space (RKHS) computed w.r.t. some distributionP, has played a fun-
damental role as a basic building block of many kernel-basedlearning algorithms [2–4], and has
recently gained increasing attention through the notion ofembedding distributions in an RKHS [5–
13]. Estimating the kernel mean remains an important problem as the underlying distributionP is
usually unknown and we must rely entirely on the sample drawnaccording toP.

Given a random sample drawn independently and identically (i.i.d.) from P, the most common
way to estimate the kernel mean is by replacingP by the empirical measure,Pn := 1

n

∑n
i=1 δXi

whereδx is a Dirac measure atx [5, 6]. Without any prior knowledge aboutP, the empirical
estimator is possibly the best one can do. However, [1] showed that this estimator can be “improved”
by constructing a shrinkage estimator which is a combination of a model with low bias and high
variance, and a model with high bias but low variance. Interestingly, significant improvement is
in fact possible if the trade-off between these two models ischosen appropriately. The shrinkage
estimator proposed in [1], which is motivated from the classical James-Stein shrinkage estimator
[14] for the estimation of the mean of a normal distribution, is shown to have a smaller mean-squared
error than that of the empirical estimator. These findings provide some support for the conceptual
premise that we might be somewhat pessimistic in using the empirical estimator of the kernel mean
and there is abundant room for further progress.

In this work, we adopt a spectral filtering approach to obtainshrinkage estimators of kernel mean
that improve on the empirical estimator. The motivation behind our approach stems from the idea
presented in [1] where the kernel mean estimation is reformulated as an empirical risk minimization
(ERM) problem, with the shrinkage estimator being then obtained through penalized ERM. It is
important to note that this motivation differs fundamentally from the typical supervised learning as
the goal of regularization here is to get the James-Stein-like shrinkage estimators [14] rather than
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to prevent overfitting. By looking at regularization from a filter function perspective, in this paper,
we show that a wide class of shrinkage estimators for kernel mean can be obtained and that these
estimators are consistent for an appropriate choice of the regularization/shrinkage parameter.

Unlike in earlier works [15–18] where the spectral filtering approach has been used in supervised
learning problems, we here deal with unsupervised setting and only leverage spectral filtering as a
way to construct a shrinkage estimator of the kernel mean. One of the advantages of this approach
is that it allows us to incorporate meaningful prior knowledge. The resultant estimators are char-
acterized by the filter function, which can be chosen according to the relevant prior knowledge.
Moreover, the spectral filtering gives rise to a broader interpretation of shrinkage through, for exam-
ple, the notion of early stopping and dimension reduction. Our estimators not only outperform the
empirical estimator, but are also simple to implement and computationally efficient.

The paper is organized as follows. In Section2, we introduce the problem of shrinkage estimation
and present a new result that theoretically justifies the shrinkage estimator over the empirical esti-
mator for kernel mean, which improves on the work of [1] while removing some of its drawbacks.
Motivated by this result, we consider a general class of shrinkage estimators obtained via spectral
filtering in Section3 whose theoretical properties are presented in Section4. The empirical perfor-
mance of the proposed estimators are presented in Section5. The missing proofs of the results are
given in the supplementary material.

2 Kernel mean shrinkage estimator

In this section, we present preliminaries on the problem of shrinkage estimation in the context of esti-
mating the kernel mean [1] and then present a theoretical justification (see Theorem1) for shrinkage
estimators that improves our understanding of the kernel mean estimation problem, while alleviating
some of the issues inherent in the estimator proposed in [1].

Preliminaries: Let H be an RKHS of functions on a separable topological spaceX . The spaceH
is endowed with inner product〈·, ·〉, associated norm‖ · ‖, and reproducing kernelk : X ×X → R,
which we assume to be continuous and bounded, i.e.,κ := supx∈X

√
k(x, x) < ∞. The kernel

mean of some unknown distributionP onX and its empirical estimate—we refer to this askernel
mean estimator(KME)—from i.i.d. samplex1, . . . , xn are given by

µP :=

∫

X

k(x, ·) dP(x) and µ̂P :=
1

n

n∑

i=1

k(xi, ·), (1)

respectively. As mentioned before,µ̂P is the “best” possible estimator to estimateµP if nothing is
known aboutP. However, depending on the information that is available aboutP, one can construct
various estimators ofµP that perform “better” thanµP. Usually, the performance measure that is
used for comparison is the mean-squared error though alternate measures can be used. Therefore,
our main objective is to improve upon KME in terms of the mean-squared error, i.e., constructµ̃P

such thatEP‖µ̃P−µP‖2 ≤ EP‖µ̂P−µP‖2 for all P ∈ P with strict inequality holding for at least one
element inP whereP is a suitably large class of Borel probability measures onX . Such an estimator
µ̃P is said to beadmissiblew.r.t P. If P = M1

+(X ) is the set of all Borel probability measures on
X , thenµ̃P satisfying the above conditions may not exist and in that sense,µ̂P is possibly the best
estimator ofµP that one can have.

Admissibility of shrinkage estimator: To improve upon KME, motivated by the James-Stein esti-
mator,θ̃, [1] proposed a shrinkage estimatorµ̂α := αf∗ + (1− α)µ̂P whereα ∈ R is the shrinkage
parameter that balances the low-bias, high-variance model(µ̂P) with the high-bias, low-variance
model (f∗ ∈ H). Assuming for simplicityf∗ = 0, [1] showed thatEP‖µ̂α−µP‖2 < EP‖µ̂P−µP‖2
if and only if α ∈ (0, 2∆/(∆ + ‖µP‖2)) where∆ := EP‖µ̂P − µP‖2. While this is an interesting
result, the resultant estimatorµ̂α is strictly not a “statistical estimator” as it depends on quantities
that need to be estimated, i.e., it depends onα whose choice requires the knowledge ofµP, which
is the quantity to be estimated. We would like to mention that[1] handles the general case withf∗

being not necessarily zero, wherein the range forα then depends onf∗ as well. But for the purposes
of simplicity and ease of understanding, for the rest of thispaper we assumef∗ = 0. Sinceµ̂α is
not practically interesting, [1] resorted to the following representation ofµP andµ̂P as solutions to
the minimization problems [1, 19]:
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µP = arg inf
g∈H

∫

X

‖k(x, ·)− g‖2 dP(x), µ̂P = arg inf
g∈H

1

n

n∑

i=1

‖k(xi, ·)− g‖2, (2)

using whichµ̂α is shown to be the solution to the regularized empirical riskminimization problem:

µ̌λ = arg inf
g∈H

1

n

n∑

i=1

‖k(xi, ·)− g‖2 + λ‖g‖2, (3)

whereλ > 0 andα := λ
λ+1 , i.e., µ̌λ = µ̂ λ

λ+1
. It is interesting to note that unlike in supervised

learning (e.g., least squares regression), the empirical minimization problem in (2) is not ill-posed
and therefore does not require a regularization term although it is used in (3) to obtain a shrinkage
estimator ofµP. [1] then obtained a value forλ through cross-validation and used it to construct
µ̂ λ

λ+1
as an estimator ofµP, which is then shown to perform empirically better thanµ̂P. However,

no theoretical guarantees including the basic requirementof µ̂ λ
λ+1

being consistent are provided. In
fact, becauseλ is data-dependent, the above mentioned result about the improved performance of
µ̂α over a range ofα does not hold as such a result is proved assumingα is a constant and does not
depend on the data. While it is clear that the regularizer in (3) is not needed to make (2) well-posed,
the role ofλ is not clear from the point of view of̂µ λ

λ+1
being consistent and better thanµ̂P. The

following result provides a theoretical understanding ofµ̂ λ
λ+1

from these viewpoints.

Theorem 1. Let µ̌λ be constructed as in (3). Then the following hold.

(i) ‖µ̌λ − µP‖ P→ 0 as λ → 0 and n → ∞. In addition, if λ = n−β for someβ > 0, then
‖µ̌λ − µP‖ = OP(n

−min{β,1/2}).

(ii) For λ = cn−β with c > 0 and β > 1, definePc,β := {P ∈ M1
+(X ) : ‖µP‖2 <

A
∫
k(x, x) dP(x)} whereA := 21/ββ

21/ββ+c1/β(β−1)(β−1)/β . Then∀n and ∀P ∈ Pc,β , we have

EP‖µ̌λ − µP‖2 < EP‖µ̂P − µP‖2.
Remark. (i) Theorem1(i) shows thaťµλ is a consistent estimator ofµP as long asλ → 0 and the
convergence rate in probability of‖µ̌λ − µP‖ is determined by the rate of convergence ofλ to zero,
with the best possible convergence rate beingn−1/2. Therefore to attain a fast rate of convergence,
it is instructive to chooseλ such thatλ

√
n→ 0 asλ→ 0 andn→∞.

(ii ) Suppose for somec > 0 andβ > 1, we chooseλ = cn−β , which means the resultant estimator
µ̌λ is a proper estimator as it does not depend on any unknown quantities. Theorem1(ii) shows
that for anyn andP ∈ Pc,β , µ̌λ is a “better” estimator than̂µP. Note that for anyP ∈ M1

+(X ),
‖µP‖2 =

∫ ∫
k(x, y) dP(x) dP(y) ≤ (

∫ √
k(x, x) dP(x))2 ≤

∫
k(x, x) dP(x). This meanšµλ

is admissible if we restrictM1
+(X ) to Pc,β which considers only those distributions for which

‖µP‖2/
∫
k(x, x) dP(x) is strictly less than a constant,A < 1. It is obvious to note that ifc is

very small orβ is very large, thenA gets closer to one anďµλ behaves almost likêµP, thereby
matching with our intuition.
(iii ) A nice interpretation forPc,β can be obtained as in Theorem1(ii) when k is a translation in-
variant kernel onRd. It can be shown thatPc,β contains the class of all probability measures whose
characteristic function has anL2 norm (and therefore is the set of square integrable probability den-
sities ifP has a density w.r.t. the Lebesgue measure) bounded by a constant that depends onc, β and
k (see§2 in the supplementary material). �

3 Spectral kernel mean shrinkage estimator

Let us return to the shrinkage estimatorµ̂α considered in [1], i.e., µ̂α = αf∗ + (1 − α)µ̂P =
α
∑

i〈f∗, ei〉ei + (1− α)∑i〈µ̂P, ei〉ei, where(ei)i∈N are the countable orthonormal basis (ONB)
of H—countable ONB exist sinceH is separable which follows fromX being separable andk
being continuous [20, Lemma 4.33]. This estimator can be generalized by considering the shrinkage
estimatorµ̂α :=

∑
i αi〈f∗, ei〉ei +

∑
i(1 − αi)〈µ̂P, ei〉ei whereα := (α1, α2, . . .) ∈ R

∞ is
a sequence of shrinkage parameters. If∆α := EP‖µ̂α − µP‖2 is the risk of this estimator, the
following theorem gives an optimality condition onα for which∆α < ∆.
Theorem 2. For some ONB(ei)i, ∆α −∆ =

∑
i(∆α,i −∆i) where∆α,i and∆i denote the risk

of theith component of̂µα andµ̂P, respectively. Then,∆α,i −∆i < 0 if

0 < αi <
2∆i

∆i + (f∗i − µi)2
, (4)
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uncorrelated isotropic Gaussian

X ∼ N (θ, I)

θ̂ML = X

.
θ

target

correlated anisotropic Gaussian

X ∼ N (θ,Σ)

θ̂ML = X

.
θ

target

Figure 1: Geometric explanation of a shrinkage estimator when estimating a mean of a Gaussian
distribution. For isotropic Gaussian, the level sets of thejoint density ofθ̂ML = X are hyperspheres.
In this case, shrinkage has the same effect regardless of thedirection. Shaded area represents those
estimates that get closer toθ after shrinkage. For anisotropic Gaussian, the level sets are concentric
ellipsoids, which makes the effect dependent on the direction of shrinkage.

wheref∗i andµi denote the Fourier coefficients off∗ andµP, respectively.

The condition in (4) is a component-wise version of the condition given in [1, Theorem 1] for a class
of estimatorŝµα := αf∗ + (1 − α)µ̂P which may be expressed here by assuming that we have a
constant shrinkage parameterαi = α for all i. Clearly, as the optimal range ofαi may vary across
coordinates, the class of estimators in [1] does not allow us to adjustαi accordingly. To understand
why this property is important, let us consider the problem of estimating the mean of Gaussian
distribution illustrated in Figure1. For correlated random variableX ∼ N (θ,Σ), a natural choice
of basis is the set of orthonormal eigenvectors which diagonalize the covariance matrixΣ of X.
Clearly, the optimal range ofαi depends on the corresponding eigenvalues. Allowing for different
basis(ei)i and shrinkage parameterαi opens up a wide range of strategies that can be used to
construct “better” estimators.

A natural strategy under this representation is as follows:i) we specify the ONB(ei)i and project
µ̂P onto this basis.ii ) we shrink eacĥµi independently according to a pre-defined shrinkage rule.
iii ) the shrinkage estimate is reconstructed as a superposition of the resulting components. In other
words, an ideal shrinkage estimator can be defined formally as a non-linear mapping:

µ̂P −→
∑

i

h(αi)〈f∗, ei〉ei +
∑

i

(1− h(αi))〈µ̂P, ei〉ei (5)

whereh : R→ R is a shrinkage rule. Since we make no reference to any particular basis(ei)i, nor to
any particular shrinkage ruleh, a wide range of strategies can be adopted here. For example,we can
view whiteningas a special case in whichf∗ is the data average1n

∑n
i=1 xi and1−h(αi) = 1/

√
αi

whereαi andei are theith eigenvalue and eigenvector of the covariance matrix, respectively.

Inspired by Theorem2, we adopt the spectral filtering approach as one of the strategies to construct
the estimators of the form (5). To this end, owing to the regularization interpretation in (3), we
consider estimators of the form

∑n
i=1 βik(xi, ·) for someβ ∈ R

n—looking for such an estimator
is equivalent to learning asigned measurethat is supported on(xi)ni=1. Since

∑n
i=1 βik(xi, ·)

is a minimizer of (3), β should satisfyKβ = K1n whereK is ann × n Gram matrix and1n =
[1/n. . . . , 1/n]⊤. Here the solution is triviallyβ = 1n, i.e., the coefficients of the standard estimator
µ̂P if K is invertible. SinceK−1 may not exist and even if it exists, the computation of it can be
numerically unstable, the idea of spectral filtering—this isquite popular in the theory of inverse
problems [15] and has been used in kernel least squares [17]—is to replaceK−1 by some regularized
matricesgλ(K) that approximatesK−1 asλ goes to zero. Note that unlike in (3), the regularization
is quite important here (i.e., the case of estimators of the form

∑n
i=1 βik(xi, ·)) without which the

the linear system is under determined. Therefore, we propose the following class of estimators:

µ̂λ :=
n∑

i=1

βik(xi, ·) with β(λ) := gλ(K)K1n, (6)

wheregλ(·) is a filter function andλ is referred to as a shrinkage parameter. The matrix-valued
function gλ(K) can be described by a scalar functiongλ : [0, κ2] → R on the spectrum ofK.
That is, ifK = UDU

⊤ is the eigen-decomposition ofK whereD = diag(γ̃1, . . . , γ̃n), we have
gλ(D) = diag(gλ(γ̃1), . . . , gλ(γ̃n)) and gλ(K) = Ugλ(D)U⊤. For example, the scalar filter
function of Tikhonov regularization isgλ(γ) = 1/(γ + λ). In the sequel, we call this class of
estimators aspectral kernel mean shrinkage estimator(Spectral-KMSE).
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Table 1: Update equations forβ and corresponding filter functions.
Algorithm Update Equation (a := K1n −Kβt−1) Filter Function

L2 Boosting βt ← βt−1 + ηa g(γ) = η
∑t−1

i=1(1− ηγ)i
Acc. L2 Boosting βt ← βt−1 + ωt(β

t−1 − βt−2) + κt

n a g(γ) = pt(γ)

Iterated Tikhonov (K+ nλI)βi = 1n + nλβi−1 g(γ) = (γ+λ)t−γt

λ(γ+λ)t

Truncated SVD None g(γ) = γ−1
1{γ≥λ}
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L2 Boosting
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Figure 2: Plot ofg(γ)γ.

Proposition 3. The Spectral-KMSE satisfieŝµλ =
∑n

i=1 gλ(γ̃i)γ̃i〈µ̂, ṽi〉ṽi, where(γ̃i, ṽi) are
eigenvalue and eigenfunction pairs of the empirical covariance operatorĈk : H → H defined as
Ĉk = 1

n

∑n
i=1 k(·, xi)⊗ k(·, xi).

By virtue of Proposition3, if we choose1 − h(γ̃) := gλ(γ̃)γ̃, the Spectral-KMSE is indeed in
the form of (5) whenf∗ = 0 and(ei)i is the kernel PCA (KPCA) basis, with the filter function
gλ determining the shrinkage rule. Since by definitiongλ(γ̃i) approaches the function1/γ̃i asλ
goes to 0, the functiongλ(γ̃i)γ̃i approaches 1 (no shrinkage). As the value ofλ increases, we have
more shrinkage because the value ofgλ(γ̃i)γ̃i deviates from 1, and the behavior of this deviation
depends on the filter functiongλ. For example, we can see that Proposition3 generalizes Theorem
2 in [1] where the filter function isgλ(K) = (K + nλI)−1, i.e., g(γ) = 1/(γ + λ). That is, we
havegλ(γ̃i)γ̃i = γ̃i/(γ̃i + λ), implying that the effect of shrinkage is relatively largerin the low-
variance direction. In the following, we discuss well-known examples of spectral filtering algorithms
obtained by various choices ofgλ. Update equations forβ(λ) and corresponding filter functions are
summarized in Table1. Figure2 illustrates the behavior of these filter functions.

L2 Boosting. This algorithm, also known as gradient descent or Landweberiteration, finds a
weight β by performing a gradient descent iteratively. Thus, we can interpretearly stoppingas
shrinkage and the reciprocal of iteration number as shrinkage parameter, i.e.,λ ≈ 1/t. The step-size
η does not play any role for shrinkage [16], so we use the fixed step-sizeη = 1/κ2 throughout.

Accelerated L2 Boosting. This algorithm, also known asν-method, uses an accelerated gradient
descent step, which is faster than L2 Boosting because we only need

√
t iterations to get the same

solution as the L2 Boosting would get aftert iterations. Consequently, we haveλ ≈ 1/t2.

Iterated Tikhonov. This algorithm can be viewed as a combination of Tikhonov regularization
and gradient descent. Both parametersλ andt play the role of shrinkage parameter.

Truncated Singular Value Decomposition. This algorithm can be interpreted as a projection onto
the first principal components of the KPCA basis. Hence, we may interpretdimensionality reduction
as shrinkage and the size of reduced dimension as shrinkage parameter. This approach has been used
in [21] to improve the kernel mean estimation under the low-rank assumption.

Most of the above spectral filtering algorithms allow to compute the coefficientsβ without explicitly
computing the eigen-decomposition ofK, as we can see in Table1, and some of which may have
no natural interpretation in terms of regularized risk minimization. Lastly, an initialization ofβ
corresponds to the target of shrinkage. In this work, we assume thatβ0 = 0 throughout.

4 Theoretical properties of Spectral-KMSE

This section presents some theoretical properties for the proposed Spectral-KMSE in (6). To this
end, we first present a regularization interpretation that is different from the one in (3) which involves
learning a smooth operator fromH to H [22]. This will be helpful to investigate the consistency of
the Spectral-KMSE. Let us consider the following regularized risk minimization problem,

argmin
F∈H⊗H

EX ‖k(X, ·)− F[k(X, ·)]‖2
H

+ λ‖F‖2HS (7)

whereF is a Hilbert-Schmidt operator fromH to H. Essentially, we are seeking a smooth operator
F that mapsk(x, ·) to itself, where (7) is an instance of the regression framework in [22]. The
formulation of shrinkage as the solution of a smooth operator regression, and the empirical solution
(8) and in the lines below, were given in a personal communication by Arthur Gretton. It can be
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shown that the solution to (7) is given byF = Ck(Ck + λI)−1 whereCk : H → H is a covariance
operator inH defined asCk =

∫
k(·, x) ⊗ k(·, x) dP(x) (see§5 of the supplement for a proof).

Defineµλ := FµP = Ck(Ck + λI)−1µP. Sincek is bounded, it is easy to verify thatCk is Hilbert-
Schmidt and therefore compact. Hence by the Hilbert-Schmidt theorem,Ck =

∑
i γi〈·, ψi〉ψi where

(γi)i∈N are the positive eigenvalues and(ψi)i∈N are the corresponding eigenvectors that form an
ONB for the range space ofCk denoted asR(Ck). This impliesµλ can be decomposed asµλ =∑∞

i=1
γi

γi+λ 〈µP, ψi〉ψi. We can observe that the filter function corresponding to theproblem (7)
is gλ(γ) = 1/(γ + λ). By extending this approach to other filter functions, we obtain µλ =∑∞

i=1 γigλ(γi)〈µP, ψi〉ψi which is equivalent toµλ = Ckgλ(Ck)µP.

SinceCk is a compact operator, the role of filter functiongλ is to regularize the inverse ofCk.
In standard supervised setting, the explicit form of the solution is fλ = gλ(Lk)Lkfρ whereLk

is the integral operator of kernelk acting inL2(X , ρX) andfρ is the expected solution given by
fρ(x) =

∫
Y
y dρ(y|x) [16]. It is interesting to see thatµλ admits a similar form to that offλ, but it is

written in term of covariance operatorCk instead of the integral operatorLk. Moreover, the solution
to (7) is also in a similar form to the regularized conditional embeddingµY |X = CY X(Ck + λI)−1

[9]. This connection implies that the spectral filtering may beapplied more broadly to improve the
estimation of conditional mean embedding, i.e.,µY |X = CY Xgλ(Ck).
The empirical counterpart of (7) is given by

argmin
F

1

n

n∑

i=1

‖k(xi, ·)− F[k(xi, ·)]‖2H + λ‖F‖2HS , (8)

resulting inµ̂λ = Fµ̂P = 1
⊤
nK(K + λI)−1Φ whereΦ = [k(x1, ·), . . . , k(xn, ·)]⊤, which matches

with the one in (6) with gλ(K) = (K + λI)−1. Note that this is exactly the F-KMSE proposed in
[1]. Based onµλ which depends onP, an empirical version of it can be obtained by replacingCk
andµP with their empirical estimators leading tõµλ = Ĉkgλ(Ĉk)µ̂P. The following result shows
thatµ̂λ = µ̃λ, which means the Spectral-KMSE proposed in (6) is equivalent to solving (8).

Proposition 4. Let Ĉk and µ̂P be the sample counterparts ofCk and µP given by Ĉk :=
1
n

∑n
i=1 k(xi, ·) ⊗ k(xi, ·) and µ̂P := 1

n

∑n
i=1 k(xi, ·), respectively. Then, we have thatµ̃λ :=

Ĉkgλ(Ĉk)µ̂P = µ̂λ, whereµ̂λ is defined in (6).

Having established a regularization interpretation forµ̂λ, it is of interest to study the consistency and
convergence rate of̂µλ similar to KMSE in Theorem1. Our main goal here is to derive convergence
rates for a broad class of algorithms given a set of sufficientconditions on the filter function,gλ. We
believe that for some algorithms it is possible to derive thebest achievable bounds, which requires
ad-hoc proofs for each algorithm. To this end, we provide a set of conditions anyadmissiblefilter
function,gλ must satisfy.
Definition 1. A family of filter functionsgλ : [0, κ2] → R, 0 < λ ≤ κ2 is said to be admis-
sible if there exists finite positive constantsB, C, D, and η0 (all independent ofλ) such that
(C1) supγ∈[0,κ2] |γgλ(γ)| ≤ B, (C2) supγ∈[0,κ2] |rλ(γ)| ≤ C and(C3) supγ∈[0,κ2] |rλ(γ)|γη ≤
Dλη, ∀ η ∈ (0, η0] hold, whererλ(γ) := 1− γgλ(γ).

These conditions are quite standard in the theory of inverseproblems [15, 23]. The constantη0
is called thequalificationof gλ and is a crucial factor that determines the rate of convergence in
inverse problems. As we will see below, that the rate of convergence of̂µλ depends on two factors:
(a) smoothness ofµP which is usually unknown as it depends on the unknownP and (b) qualification
of gλ which determines how well the smoothness ofµP is captured by the spectral filter,gλ.

Theorem 5. Supposegλ is admissible in the sense of Definition1. Letκ = supx∈X

√
k(x, x). If

µP ∈ R(Cβk ) for someβ > 0, then for anyδ > 0, with probability at least1− 3e−δ,

‖µ̂λ − µP‖ ≤
2κB + κB

√
2δ√

n
+Dλmin{β,η0}‖C−β

k µP‖+ Cτ
(2
√
2κ2
√
δ)min{1,β}

nmin{1/2,β/2}
‖C−β

k µP‖,

whereR(A) denotes the range space ofA andτ is some universal constant that does not depend on

λ andn. Therefore,‖µ̂λ − µP‖ = OP(n
−min{1/2,β/2}) with λ = o(n

−
min{1/2,β/2}
min{β,η0} ).

Theorem5 shows that the convergence rate depends on the smoothness ofµP which is imposed
through the range space condition thatµP ∈ R(Cβk ) for someβ > 0. Note that this is in contrast
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to the estimator in Theorem1 which does not require any smoothness assumptions onµP. It can
be shown that the smoothness ofµP increases with increase inβ. This means, irrespective of the
smoothness ofµP for β > 1, the best possible convergence rate isn−1/2 which matches with that of
KMSE in Theorem1. While the qualificationη0 does not seem to directly affect the rates, it controls
the rate at whichλ converges to zero. For example, ifgλ(γ) = 1/(γ + λ) which corresponds to
Tikhonov regularization, it can be shown thatη0 = 1 which means forβ > 1, λ = o(n−1/2)
implying thatλ cannot decay to zero slower thann−1/2. Ideally, one would require a largerη0
(preferably infinity which is the case with truncated SVD) sothat the convergence ofλ to zero can
be made arbitrarily slow ifβ is large. This way, bothβ andη0 control the behavior of the estimator.

In fact, Theorem5 provides a choice forλ—which is what we used in Theorem1 to study the
admissibility of µ̌λ to Pc,β—to construct the Spectral-KMSE. However, this choice ofλ depends
onβ which is not known in practice (althoughη0 is known as it is determined by the choice ofgλ).
Therefore,λ is usually learnt from data through cross-validation or through Lepski’s method [24] for
which guarantees similar to the one presented in Theorem5 can be provided. However, irrespective
of the data-dependent/independent choice forλ, checking for the admissibility of Spectral-KMSE
(similar to the one in Theorem1) is very difficult and we intend to consider it in future work.

5 Empirical studies

Synthetic data. Given the i.i.d. sampleX = {x1, x2, . . . , xn} fromP wherexi ∈ R
d, we evaluate

different estimators using the loss functionL(β,X,P) := ‖∑n
i=1 βik(xi, ·)− Ex∼P[k(x, ·)]‖2H.

The risk of the estimator is subsequently approximated by averaging overm independent copies of
X. In this experiment, we setn = 50, d = 20, andm = 1000. Throughout, we use the Gaussian
RBF kernelk(x, x′) = exp(−‖x − x′‖2/2σ2) whose bandwidth parameter is calculated using the
median heuristic, i.e.,σ2 = median{‖xi − xj‖2}. To allow for an analytic calculation of the
lossL(β,X,P), we assume that the distributionP is ad-dimensional mixture of Gaussians [1, 8].
Specifically, the data are generated as follows:x ∼∑4

i=1 πiN (θi,Σi)+ε, θij ∼ U(−10, 10),Σi ∼
W(3 × Id, 7), ε ∼ N (0, 0.2 × Id) whereU(a, b) andW(Σ0, df) are the uniform distribution and
Wishart distribution, respectively. As in [1], we setπ = [0.05, 0.3, 0.4, 0.25].

A natural approach for choosingλ is cross-validation procedure, which can be performed efficiently
for the iterative methods such as Landweber and acceleratedLandweber. For these two algorithms,
we evaluate the leave-one-out score and selectβt at the iterationt that minimizes this score (see,
e.g., Figure3(a)). Note that these methods have the built-in property of computing the wholeregu-
larization pathefficiently. Since each iteration of the iterated Tikhonov is in fact equivalent to the
F-KMSE, we assumet = 3 for simplicity and use the efficient LOOCV procedure proposed in [1]
to findλ at each iteration. Lastly, the truncation limit of TSVD can be identified efficiently by mean
of generalized cross-validation (GCV) procedure [25]. To allow for an efficient calculation of GCV
score, we resort to the alternative loss functionL(β) := ‖Kβ −K1n‖22.

Figure3 reveals interesting aspects of the Spectral-KMSE. Firstly, as we can see in Figure3(a), the
number of iterations acts as shrinkage parameter whose optimal value can be attained within just
a few iterations. Moreover, these methods do not suffer from“over-shrinking” becauseλ → 0 as
t → ∞. In other words, if the chosent happens to be too large, the worst we can get is the stan-
dard empirical estimator. Secondly, Figure3(b) demonstrates that both Landweber and accelerated
Landweber are more computationally efficient than the F-KMSE. Lastly, Figure3(c) suggests that
the improvement of shrinkage estimators becomes increasingly remarkable in a high-dimensional
setting. Interestingly, we can observe that most Spectral-KMSE algorithms outperform the S-
KMSE, which supports our hypothesis on the importance of thegeometric information of RKHS
mentioned in Section3. In addition, although the TSVD still gain from shrinkage, the improvement
is smaller than other algorithms. This highlights the importance of filter functions and associated
parameters.

Real data. We apply Spectral-KMSE to the density estimation problem via kernel mean matching
[1, 26]. The datasets were taken from the UCI repository1 and pre-processed by standardizing
each feature. Then, we fit a mixture modelQ =

∑r
j=1 πjN (θj , σ

2
j I) to the pre-processed dataset

1http://archive.ics.uci.edu/ml/
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Figure 3:(a) For iterative algorithms, the number of iterations acts as shrinkage parameter.(b) The
iterative algorithms such as Landweber and accelerated Landweber are more efficient than the F-
KMSE. (c) A percentage of improvement w.r.t. the KME, i.e.,100× (R−Rλ)/R whereR andRλ

denote the approximated risk of KME and KMSE, respectively.Most Spectral-KMSE algorithms
outperform S-KMSE which does not take into account the geometric information of the RKHS.

X := {xi}ni=1 by minimizing‖µQ − µ̂X‖2 subject to the constraint
∑r

j=1 πj = 1. HereµQ is the
mean embedding of the mixture modelQ andµ̂X is the empirical mean embedding obtained from
X. Based on different estimators ofµX , we evaluate the resultant modelQ by the negative log-
likelihood score on the test data. The parameters(πj ,θj , σ

2
j ) are initialized by the best one obtained

from theK-means algorithm with 50 initializations. Throughout, we setr = 5 and use 25% of each
dataset as a test set.

Table 2: The average negative log-likelihood evaluated on the test set. The results are obtained from
30 repetitions of the experiment. The boldface represents the statistically significant results.

Dataset KME S-KMSE F-KMSE Landweber Acc Land Iter Tik TSVD
ionosphere 36.1769 36.1402 36.1622 36.1204 36.1554 36.1334 36.1442
glass 10.7855 10.7403 10.7448 10.7099 10.7541 10.9078 10.7791
bodyfat 18.1964 18.1158 18.1810 18.1607 18.1941 18.1267 18.1061
housing 14.3016 14.2195 14.0409 14.2499 14.1983 14.2868 14.3129
vowel 13.9253 13.8426 13.8817 13.8337 14.1368 13.8633 13.8375
svmguide2 28.1091 28.0546 27.9640 28.1052 27.9693 28.0417 28.1128
vehicle 18.5295 18.3693 18.2547 18.4873 18.3124 18.412818.3910
wine 16.7668 16.7548 16.7457 16.7596 16.6790 16.6954 16.5719
wdbc 35.1916 35.1814 35.0023 35.1402 35.1366 35.1881 35.1850

Table2 reports the results on real data. In general, the mixture modelQ obtained from the proposed
shrinkage estimators tend to achieve lower negative log-likelihood score than that obtained from the
standard empirical estimator. Moreover, we can observe that the relative performance of different
filter functions vary across datasets, suggesting that, in addition to potential gain from shrinkage, in-
corporating prior knowledge through the choice of filter function could lead to further improvement.

6 Conclusion

We shows that several shrinkage strategies can be adopted toimprove the kernel mean estimation.
This paper considers the spectral filtering approach as one of such strategies. Compared to previous
work [1], our estimators take into account the specifics of kernel methods and meaningful prior
knowledge through the choice of filter functions, resultingin a wider class of shrinkage estimators.
The theoretical analysis also reveals a fundamental similarity to standard supervised setting. Our
estimators are simple to implement and work well in practice, as evidenced by the empirical results.
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