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Abstract

The problem of estimating the kernel mean in a reproducimgeteHilbert space
(RKHS) is central to kernel methods in that it is used by étadspproaches (e.g.,
when centering a kernel PCA matrix), and it also forms the @oference step of
modern kernel methods (e.g., kernel-based non-parantesti) that rely on em-
bedding probability distributions in RKHSs. Previous w¢if has shown that
shrinkage can help in constructing “better” estimatordefkernel mean than the
empirical estimator. The present paper studies the censigtand admissibility
of the estimators in1], and proposes a wider class of shrinkage estimators that
improve upon the empirical estimator by considering appate basis functions.
Using the kernel PCA basis, we show that some of these estisnaé&n be con-
structed using spectral filtering algorithms which are shtmbe consistent under
some technical assumptions. Our theoretical analysisraismls a fundamental
connection to the kernel-based supervised learning framew he proposed es-
timators are simple to implement and perform well in praetic

1 Introduction

The kernel mean or the mean element, which corresponds tme¢he of the kernel function in a
reproducing kernel Hilbert space (RKHS) computed w.r.msdlistributionP, has played a fun-
damental role as a basic building block of many kernel-badserhing algorithmsZ—4], and has
recently gained increasing attention through the notioenolbedding distributions in an RKHS+{
13]. Estimating the kernel mean remains an important problerha underlying distributiof® is
usually unknown and we must rely entirely on the sample dragoording tdP.

Given a random sample drawn independently and identicallg.f from P, the most common
way to estimate the kernel mean is by repladihfy the empirical measur®,, := %Z?:l 0x,
whered, is a Dirac measure at [5, 6]. Without any prior knowledge aboui, the empirical
estimator is possibly the best one can do. HowegsHowed that this estimator can be “improved”
by constructing a shrinkage estimator which is a combinatiba model with low bias and high
variance, and a model with high bias but low variance. Istimgly, significant improvement is
in fact possible if the trade-off between these two modelshissen appropriately. The shrinkage
estimator proposed irl], which is motivated from the classical James-Stein stagakestimator
[14] for the estimation of the mean of a normal distribution liswn to have a smaller mean-squared
error than that of the empirical estimator. These findingwidie some support for the conceptual
premise that we might be somewhat pessimistic in using th@razal estimator of the kernel mean
and there is abundant room for further progress.

In this work, we adopt a spectral filtering approach to obshirinkage estimators of kernel mean
that improve on the empirical estimator. The motivationibdtour approach stems from the idea
presented in]] where the kernel mean estimation is reformulated as anraapiisk minimization
(ERM) problem, with the shrinkage estimator being then ioleid through penalized ERM. It is
important to note that this motivation differs fundamelytflom the typical supervised learning as
the goal of regularization here is to get the James-Stkindhrinkage estimatord 4] rather than
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to prevent overfitting. By looking at regularization from lefi function perspective, in this paper,
we show that a wide class of shrinkage estimators for kermglmtan be obtained and that these
estimators are consistent for an appropriate choice ofatpelarization/shrinkage parameter.

Unlike in earlier works 15-18] where the spectral filtering approach has been used in wigpdr
learning problems, we here deal with unsupervised settilgoaly leverage spectral filtering as a
way to construct a shrinkage estimator of the kernel meare @the advantages of this approach
is that it allows us to incorporate meaningful prior knowged The resultant estimators are char-
acterized by the filter function, which can be chosen acoordd the relevant prior knowledge.
Moreover, the spectral filtering gives rise to a broaderprtation of shrinkage through, for exam-
ple, the notion of early stopping and dimension reductionr €stimators not only outperform the
empirical estimator, but are also simple to implement andpatationally efficient.

The paper is organized as follows. In Sect®mwe introduce the problem of shrinkage estimation
and present a new result that theoretically justifies thinkage estimator over the empirical esti-
mator for kernel mean, which improves on the work Gfyhile removing some of its drawbacks.
Motivated by this result, we consider a general class oh&age estimators obtained via spectral
filtering in Section3 whose theoretical properties are presented in Sedtidme empirical perfor-
mance of the proposed estimators are presented in Séctibime missing proofs of the results are
given in the supplementary material.

2 Kernel mean shrinkage estimator

In this section, we present preliminaries on the problenhdh&age estimation in the context of esti-
mating the kernel meariJ and then present a theoretical justification (see Theddior shrinkage
estimators that improves our understanding of the kernahmastimation problem, while alleviating
some of the issues inherent in the estimator proposet.in [

Preliminaries: Let 3 be an RKHS of functions on a separable topological spac@he spacé{

is endowed with inner produgt, -), associated norfi- ||, and reproducing kernél: X x X — R,

which we assume to be continuous and bounded,xi.es sup,cx \/k(z,2) < oo. The kernel
mean of some unknown distributidhon X and its empirical estimate—we refer to thiskesnel
mean estimato(KME)—from i.i.d. samplexy, ..., z, are given by

pp = /X k(z,)dP(z)  and  fip:= i;k(m, ), @)

respectively. As mentioned beforgy is the “best” possible estimator to estimate if nothing is
known aboutP. However, depending on the information that is availableut®, one can construct
various estimators qgfip that perform “better” thanip. Usually, the performance measure that is
used for comparison is the mean-squared error though ateemeasures can be used. Therefore,
our main objective is to improve upon KME in terms of the maauoared error, i.e., construgt
such thatEp||fip — pp||*> < Epl| e — ue||* for all P € P with strict inequality holding for at least one
element P whereP is a suitably large class of Borel probability measuresorsuch an estimator
f is said to beadmissiblew.r.t P. If P = M3 (X) is the set of all Borel probability measures on
X, thenfip satisfying the above conditions may not exist and in thaseghy is possibly the best
estimator ofup that one can have.

Admissibility of shrinkage estimator: To improve upon KME, motivated by the James-Stein esti-
mator,6, [1] proposed a shrinkage estimafar := af* + (1 — «)ip Wherea € R is the shrinkage
parameter that balances the low-bias, high-variance m@délwith the high-bias, low-variance
model (f* € 3(). Assuming for simplicityf* = 0, [1] showed thaEp || fio — pp||*> < Epl|fe — el

if and only if a € (0,2A/(A + ||up||?)) whereA = Ep||ip — pp||*. While this is an interesting
result, the resultant estimatgy, is strictly not a “statistical estimator” as it depends ormufities
that need to be estimated, i.e., it dependswamhose choice requires the knowledge @f which
is the quantity to be estimated. We would like to mention fihhandles the general case with
being not necessarily zero, wherein the rangeftiten depends ofi* as well. But for the purposes
of simplicity and ease of understanding, for the rest of gaiper we assumg* = 0. Sincef,, is
not practically interesting,1]] resorted to the following representationof and/ip as solutions to
the minimization problemsl| 19):



pp = arg inf / k(. )~ gl* dP(z),  jip = arg inf Z lk(zi) —gl’, @)
using whichg,, is shown to be the solutlon to the regularlzed emp|i‘|c]al nigRimization problem:

i = arg inf 72 [k (2s,-) — gl* + Allg]|%, ©)

=1
whereX > 0 anda := A+1’ |.e.,m = p,%ﬂ. It is interesting to note that unlike in supervised
learning (e.g., least squares regression), the empirigaiization problem in 2) is not ill-posed
and therefore does not require a regularization term atthais used in 8) to obtain a shrinkage
estimator ofup. [1] then obtained a value fox through cross-validation and used it to construct
ﬂ%ﬂ as an estimator gip, which is then shown to perform empirically better than However,
no theoretical guarantees including the basic requiremfe;fn% being consistent are provided. In
fact, becausa is data-dependent, the above mentioned result about theweg performance of
1o, Over a range ofe does not hold as such a result is proved assumiigga constant and does not
depend on the data. While it is clear that the regularizeB)iis(not needed to mak@) well-posed,
the role of\ is not clear from the point of view o _» 2 being consistent and better thap. The

following result provides a theoretical understandmgb% from these viewpoints.

Theorem 1. Let i) be constructed as ir8f. Then the following hold.

() llgr — pel 5 0asA — 0andn — oo. In addition, ifA = n=5 for somegs > 0, then
i — p || = Op (n=mint1/21),

(i) For A = ecn ™ with ¢ > 0 and 8 > 1, defineP.z = {P € ML(X) : |ue|?® <

A [ k(z,2) dP(z)} where A := 21/13ﬁ+01/2;2;€1)<a71>/5- ThenVn and VP € P.5, we have
Ep|lfix — pel|* < Epllie — ppl?.

Remark. (i) Theoreml(i) shows thatj, is a consistent estimator @f> as long as\ — 0 and the
convergence rate in probability §fi, — up|| is determined by the rate of convergence\db zero,
with the best possible convergence rate being/2. Therefore to attain a fast rate of convergence,
it is instructive to choose such that\\/n — 0 asA — 0 andn — cc.

(i) Suppose for some > 0 andj3 > 1, we choose\ = cn—?, which means the resultant estimator
1 IS a proper estimator as it does not depend on any unknowrtitieen Theoreml(ii) shows
that for anyn andP € P g, fi, is a “better” estimator thapp. Note that for anyP € M3 (X),
luell? = [ [ k(z,y) dP(z) dP(y) < (f /k(z,2) dP(x))> < [ k(z,z) dP(x). This meangi,

is admissible if we restricf/ (X) to P, s which considers only those distributions for which
e/ [ k(z,x) dP(z) is strictly less than a constamd, < 1. It is obvious to note that it is
very small or3 is very large, themd gets closer to one and, behaves almost lik¢ip, thereby
matching with our intuition.

(ii) A nice interpretation fofP. g can be obtained as in Theorei(ii) when & is a translation in-
variant kernel orR?. It can be shown tha®,. s contains the class of all probability measures whose
characteristic function has d norm (and therefore is the set of square integrable prabatén-

sities if P has a density w.r.t. the Lebesgue measure) bounded by anbtist depends an 5 and
k (see§2 in the supplementary material). |

3 Spectral kernel mean shrinkage estimator

Let us return to the shrinkage estimafar considered in1l, i.e., fi, = af* + (1 — a)ip =
ay (f*e)e; + (1 — ), (iw, e;)e;, where(e;);cn are the countable orthonormal basis (ONB)
of H—countable ONB exist sincg( is separable which follows fromrt’ being separable ankl
being continuous]0, Lemma 4.33]. This estimator can be generalized by corisigléne shrinkage
estimatorjia = Y . i (f* ei)e; + > .(1 — a;){fip, €;)e; Whereaw := (o, 00,...) € R>® is
a sequence of shrinkage parametersAYf := Ep|jio — pp||? is the risk of this estimator, the
following theorem gives an optimality condition @nfor which A, < A.
Theorem 2. For some ONBe;);, Aq — A =), (Aq,i — A;) whereA, ; and A; denote the risk
of theith component ofi., and/ip, respectively. Them, ; — A; < 0'if
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uncorrelated isotropic Gaussian : correlated anisotropic Gaussian

Orir = X - - Opr = X -

X ~ N(6,1)

Figure 1: Geometric explanation of a shrinkage estimatoenéstimating a mean of a Gaussian
distribution. For isotropic Gaussian, the level sets oftiret density ofd,,;, = X are hyperspheres.

In this case, shrinkage has the same effect regardless dirdwion. Shaded area represents those
estimates that get closer daafter shrinkage. For anisotropic Gaussian, the level sets@acentric
ellipsoids, which makes the effect dependent on the doedf shrinkage.

wheref* andp; denote the Fourier coefficients ¢f and up, respectively.

The condition in 4) is a component-wise version of the condition givenlinTheorem 1] for a class

of estimatorsi,, = af* + (1 — a)/ip which may be expressed here by assuming that we have a
constant shrinkage parameter = « for all i. Clearly, as the optimal range af may vary across
coordinates, the class of estimatorsihdoes not allow us to adjust; accordingly. To understand
why this property is important, let us consider the problehestimating the mean of Gaussian
distribution illustrated in Figurd. For correlated random variablé ~ N (6, Y), a natural choice

of basis is the set of orthonormal eigenvectors which diaio& the covariance matrix of X.
Clearly, the optimal range af; depends on the corresponding eigenvalues. Allowing fdewdint
basis(e;); and shrinkage parametes; opens up a wide range of strategies that can be used to
construct “better” estimators.

A natural strategy under this representation is as followswve specify the ONBe;); and project

fip onto this basisii) we shrink eachi; independently according to a pre-defined shrinkage rule.
i) the shrinkage estimate is reconstructed as a superposttite resulting components. In other
words, an ideal shrinkage estimator can be defined formaltyrzon-linear mapping:

fie — Y h(a)(f* ees + Z(l — h(e)){fip, €i)ei ®)

K3 K3
whereh : R — Ris a shrinkage rule. Since we make no reference to any patisasige; );, nor to
any particular shrinkage rule a wide range of strategies can be adopted here. For exavgtsn
view whiteningas a special case in whigtt is the data average > | z; and1 — h(a;) = 1/ /a;
wherecq; ande; are theith eigenvalue and eigenvector of the covariance matripeessely.

Inspired by Theorend, we adopt the spectral filtering approach as one of the gtest¢o construct
the estimators of the fornb). To this end, owing to the regularization interpretation(3), we
consider estimators of the forin" | 8;k(z;, -) for someB € R"—looking for such an estimator
is equivalent to learning aigned measuréhat is supported offz;)! ;. Sinced ! ; Bik(;,-)

is a minimizer of 8), 8 should satisfiy K3 = K1,, whereK is ann x n Gram matrix andl,, =
[1/n....,1/n]T. Here the solution is trivially3 = 1,,, i.e., the coefficients of the standard estimator
ap if K is invertible. SinceK~—! may not exist and even if it exists, the computation of it can b
numerically unstable, the idea of spectral filtering—thigjiste popular in the theory of inverse
problems 5] and has been used in kernel least squar@s-Fis to replacéK —! by some regularized
matricesg, (K) that approximateX —! as\ goes to zero. Note that unlike iB)( the regularization
is quite important here (i.e., the case of estimators of oneafy """, 3;k(z;, -)) without which the
the linear system is under determined. Therefore, we pmfwsfollowing class of estimators:

fix =Y Bik(wi,) with  B(\) = ga(K)K1,, (6)
=1

whereg, (+) is a filter function and\ is referred to as a shrinkage parameter. The matrix-valued
function g, (K) can be described by a scalar functign : [0,x?] — R on the spectrum oK.
Thatis, if K = UDU' is the eigen-decomposition & whereD = diag(7i,...,%,), we have
gx(D) = diag(gx(51),---,9r(F.)) and gx(K) = Ug,(D)UT. For example, the scalar filter
function of Tikhonov regularization igx(vy) = 1/(y + A). In the sequel, we call this class of
estimators apectral kernel mean shrinkage estimagSpectral-KMSE).
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Table 1: Update equations f@rand corresponding filter functions.

>
[ Algorithm | Update Equation (a := K1, — K3 1) | Filter Function | €
L2 Boosting ) Bt B +na ) g(v)=n Eﬁ;i(l — )" 05
Acc. L2 Boosting| 8 = B +w (B — B + Ea | g(y) = pi(y L
Iterated Tikhonov| (K + nAI)B; = 1, + nA\GBi—1 9(v) = (lﬁliﬂ c.
Truncated SVD | None g() =7y o 02 04 06 08 1

Figure 2: Plét ofg(~)y.

Proposition 3. The Spectral-KMSE satisfigs, = .., 9x(7:)%i (i, Vi) Vi, where(3;,v;) are

~

eigenvalue and eigenfunction pairs of the empirical comare operatoCy, : 3 — 3 defined as
Ck = % Z?:l k(7 xz) ® k(, .TZ)

By virtue of Proposition3, if we choosel — h(%) := g.(¥%)%, the Spectral-KMSE is indeed in
the form of &) when f* = 0 and(e;); is the kernel PCA (KPCA) basis, with the filter function
g» determining the shrinkage rule. Since by definitipr7;) approaches the functioly4; as\
goes to 0, the function, (7;)7; approaches 1 (no shrinkage). As the value daficreases, we have
more shrinkage because the valugyQfy;)7; deviates from 1, and the behavior of this deviation
depends on the filter functiag,. For example, we can see that Propositiogeneralizes Theorem
2 in [1] where the filter function igj\(K) = (K + nAI)~"!, i.e., g(y) = 1/(y + A). Thatis, we
havegy(7:)%: = 7:/(7: + A), implying that the effect of shrinkage is relatively largerthe low-
variance direction. In the following, we discuss well-knoexamples of spectral filtering algorithms
obtained by various choices gf. Update equations fg8()\) and corresponding filter functions are
summarized in Tablé. Figure?2 illustrates the behavior of these filter functions.

L2 Boosting. This algorithm, also known as gradient descent or Landwébeation, finds a
weight 3 by performing a gradient descent iteratively. Thus, we caarpretearly stoppingas
shrinkage and the reciprocal of iteration number as shgelgrameter, i.e\ ~ 1/t. The step-size
n does not play any role for shrinkaged], so we use the fixed step-sige= 1/x2 throughout.

Accelerated L2 Boosting. This algorithm, also known as-method, uses an accelerated gradient
descent step, which is faster than L2 Boosting because weneeldy/# iterations to get the same
solution as the L2 Boosting would get afteiterations. Consequently, we havex 1/t2.

Iterated Tikhonov. This algorithm can be viewed as a combination of Tikhonowlaggzation
and gradient descent. Both parameteendt play the role of shrinkage parameter.

Truncated Singular Value Decomposition. This algorithm can be interpreted as a projection onto
the first principal components of the KPCA basis. Hence, wgimarpretdimensionality reduction

as shrinkage and the size of reduced dimension as shrinkagepter. This approach has been used
in [21] to improve the kernel mean estimation under the low-rarskiagption.

Most of the above spectral filtering algorithms allow to cartgthe coefficient® without explicitly
computing the eigen-decompositionKf, as we can see in Table and some of which may have
no natural interpretation in terms of regularized risk mmization. Lastly, an initialization of3
corresponds to the target of shrinkage. In this work, werassthat3° = 0 throughout.

4 Theoretical properties of Spectral-KMSE

This section presents some theoretical properties for thpgsed Spectral-KMSE ir6). To this
end, we first present a regularization interpretation thdifferent from the one ird) which involves
learning a smooth operator frofi to 3 [22]. This will be helpful to investigate the consistency of
the Spectral-KMSE. Let us consider the following reguledgizisk minimization problem,

arg minpesegac  Ex KX, ) — FR(X, )5 + AFIZs ()

whereF is a Hilbert-Schmidt operator frofi to H. Essentially, we are seeking a smooth operator
F that mapsk(z, ) to itself, where 7) is an instance of the regression framework 22][ The
formulation of shrinkage as the solution of a smooth openagression, and the empirical solution
(8) and in the lines below, were given in a personal commuradoay Arthur Gretton. It can be



shown that the solution t@) is given byF = Cy,(Cj, + AI)~! whereC;, : 3 — 3 is a covariance
operator inX defined a<;, = [k(-,z) ® k(-,z) dP(x) (see§5 of the supplement for a proof).
Definepy := Fup = Cr(Cx, + AI) ' up. Sincek is bounded, it is easy to verify théj, is Hilbert-
Schmidt and therefore compact. Hence by the Hilbert-Schimébrem(, = ", i (-, ;)1; where
(v:)ien are the positive eigenvalues afg;);cn are the corresponding eigenvectors that form an
ONB for the range space @, denoted asR(Cx). This impliesu, can be decomposed as =
pya %(wﬁ&% We can observe that the filter function corresponding topitadolem )

is gx(y) = 1/(y + A). By extending this approach to other filter functions, weagby, =
Yooy vigx (i) (pe, i) which is equivalent tguy = Crgx (Cr) -

Since(Cy, is a compact operator, the role of filter functign is to regularize the inverse @fj.

In standard supervised setting, the explicit form of theusoh is fy = gx(Lx)Lwf, Where Ly

is the integral operator of kernélacting in L?(X, px) and f, is the expected solution given by
folz) = fy ydp(y|x) [16]. Itis interesting to see that, admits a similar form to that of,, but it is
written in term of covariance operat6y, instead of the integral operatéy,. Moreover, the solution
to (7) is also in a similar form to the regularized conditional @udingy | x = Cyx (Ci, + AI) ™!
[9]. This connection implies that the spectral filtering mayalpplied more broadly to improve the
estimation of conditional mean embedding, 18+ x = Cy xgx(Cy).

The empirical counterpart of) is given by
B
argmin - — D k(@) = Bl )5 + MFl s, (8)

i=1
resulting ingi, = Fip = 1) K(K + A\I)~'® where® = [k(z1,-),...,k(z,,)]", which matches
with the one in 6) with g, (K) = (K + A\I)~!. Note that this is exactly the F-KMSE proposed in
[1]. Based onuy which depends of?, an empirical version of it can be obtained by repladiig
and zip with their empirical estimators leading fo, = Cj.gx(Cy)je. The following result shows
that, = 1), which means the Spectral-KMSE proposed@hi$ equivalent to solvingsg).

Proposition 4. Let @ and jp be the sample counterparts @ and pp given by(?k
iz;’:j k(zi,-) @ k(z;,-) and jip == L3 k(x,,-), respectively. Then, we have tha :
Crgx(Cr)fip = [ix, Wherejiy is defined in §).

Having established a regularization interpretationigQrit is of interest to study the consistency and
convergence rate ¢f, similar to KMSE in Theorenmi. Our main goal here is to derive convergence
rates for a broad class of algorithms given a set of suffidentitions on the filter functiony,. We
believe that for some algorithms it is possible to derivelthst achievable bounds, which requires
ad-hoc proofs for each algorithm. To this end, we providetaoteonditions anyadmissiblefilter
function, g, must satisfy.

Definition 1. A family of filter functionsg, : [0,x%*] — R,0 < XA < x? is said to be admis-
sible if there exists finite positive constari®s C, D, and ng (all independent of\) such that
(Cl) SUPye(0,x2] h/g)\(’y)' < B, (02) SUP~e[0,x2] IT)\(’Y)| < Cand (03) SUP~e[0,x2] |7ﬂ/\(7)|’yn <
D\ ¥ € (0,1n0] hold, wherery(7) :== 1 — vga(7).

These conditions are quite standard in the theory of invpreblems 15, 23]. The constant),
is called thequalificationof g, and is a crucial factor that determines the rate of converyém
inverse problems. As we will see below, that the rate of cayesece ofiz, depends on two factors:
(a) smoothness ¢fp which is usually unknown as it depends on the unkn&vamd (b) qualification
of g which determines how well the smoothness:gfis captured by the spectral filter, .

Theorem 5. Supposey, is admissible in the sense of DefinitibnLetx = sup,cy /k(z, 2). If
up € R(C{f) for somes > 0, then for anys > 0, with probability at least. — 3e~?,

N 2kB + KB\/% min _ (2\/§K2\/5)min{1,[j’} B
[ix — pe|| < T + DA {ﬁmo}HCk BM]P’” +Cr e c; ﬂNIP’Ha

whereR (A) denotes the range space#fandr is some universal constant that does not depend on
. min{1/2,6/2}

A andn. Therefore|| iy — pp|| = Op(n=™{1/2.8/2) with A = o(n~ =niFm0) ).

Theorem5 shows that the convergence rate depends on the smoothnggsadfich is imposed

through the range space condition that € R(C,f) for someS > 0. Note that this is in contrast



to the estimator in Theorerhwhich does not require any smoothness assumptionsgorit can

be shown that the smoothness,gf increases with increase i This means, irrespective of the
smoothness qi for 3 > 1, the best possible convergence rate i3/ which matches with that of
KMSE in Theoreml. While the qualification)y does not seem to directly affect the rates, it controls
the rate at which\ converges to zero. For examplegif(y) = 1/(y + \) which corresponds to
Tikhonov regularization, it can be shown that = 1 which means fo3 > 1, A = o(n~1/?)
implying that A cannot decay to zero slower tharr'/2. Ideally, one would require a largey
(preferably infinity which is the case with truncated SVD)tkat the convergence ofto zero can

be made arbitrarily slow if is large. This way, botl¥ andr, control the behavior of the estimator.

In fact, Theoremb provides a choice fon—which is what we used in Theorefnto study the
admissibility of 2, to P, s—to construct the Spectral-KMSE. However, this choice\afepends
on 3 which is not known in practice (althougfy is known as it is determined by the choicegq.
Therefore\ is usually learnt from data through cross-validation ootlyh Lepski’'s method4] for
which guarantees similar to the one presented in The&ream be provided. However, irrespective
of the data-dependent/independent choiceXfothecking for the admissibility of Spectral-KMSE
(similar to the one in Theorend is very difficult and we intend to consider it in future work.

5 Empirical studies

Synthetic data. Giventhei.i.d. samplX = {x1,zs,...,2,} fromP wherex; ¢ R?, we evaluate
different estimators using the loss functiad, X, P) := ||> i, Bik(xi, ) — Epeplk(z, -)]||§C.

The risk of the estimator is subsequently approximated leyaming overn independent copies of
X. In this experiment, we set = 50, d = 20, andm = 1000. Throughout, we use the Gaussian
RBF kernelk(z,2') = exp(—|z — 2’||*/20?) whose bandwidth parameter is calculated using the
median heuristic, i.e.¢? = median{|z; — x;||*}. To allow for an analytic calculation of the
lossL(3, X, P), we assume that the distributi@nis a d-dimensional mixture of Gaussiank, B].
Specifically, the data are generated as follows: Zle miN(0;,%;)+¢,0;; ~U(-10,10),E; ~
W(3 x 14,7),e ~ N(0,0.2 x I;) wherel{(a,b) andW(Xo, df) are the uniform distribution and
Wishart distribution, respectively. As id], we setwr = [0.05,0.3,0.4,0.25].

A natural approach for choosingis cross-validation procedure, which can be performedieffity
for the iterative methods such as Landweber and acceletatsdiveber. For these two algorithms,
we evaluate the leave-one-out score and segédt the iterationt that minimizes this score (see,
e.g., Figure3(a)). Note that these methods have the built-in property of aging the wholeregu-
larization pathefficiently. Since each iteration of the iterated Tikhons\n fact equivalent to the
F-KMSE, we assume = 3 for simplicity and use the efficient LOOCV procedure projbse[1]

to find A at each iteration. Lastly, the truncation limit of TSVD camibentified efficiently by mean
of generalized cross-validation (GCV) procedw28||[ To allow for an efficient calculation of GCV
score, we resort to the alternative loss functt{iB) := | K3 — K1,,||3.

Figure3 reveals interesting aspects of the Spectral-KMSE. Fjraflywe can see in FiguBfa), the
number of iterations acts as shrinkage parameter whosmalptalue can be attained within just

a few iterations. Moreover, these methods do not suffer ffover-shrinking” because — 0 as

t — oo. In other words, if the chosenhappens to be too large, the worst we can get is the stan-
dard empirical estimator. Secondly, Figia@) demonstrates that both Landweber and accelerated
Landweber are more computationally efficient than the F-EMBastly, Figure3(c) suggests that
the improvement of shrinkage estimators becomes incrgigsiamarkable in a high-dimensional
setting. Interestingly, we can observe that most Spebt$E algorithms outperform the S-
KMSE, which supports our hypothesis on the importance ofgé@metric information of RKHS
mentioned in SectioB. In addition, although the TSVD still gain from shrinkagee improvement

is smaller than other algorithms. This highlights the intpoce of filter functions and associated
parameters.

Real data. We apply Spectral-KMSE to the density estimation probleankérnel mean matching
[1, 26]. The datasets were taken from the UCI repositcend pre-processed by standardizing

each feature. Then, we fit a mixture modgl= >-"_, ;N (6;, 071) to the pre-processed dataset

Yhttp://archive.ics.uci.edu/ml/
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Figure 3:(a) For iterative algorithms, the number of iterations actstamkage paramete(b) The
iterative algorithms such as Landweber and acceleratedvelper are more efficient than the F-
KMSE. (c) A percentage of improvement w.r.t. the KME, i.€00 x (R — R,)/R whereR andR),
denote the approximated risk of KME and KMSE, respectivélpst Spectral-KMSE algorithms
outperform S-KMSE which does not take into account the geéneaiaformation of the RKHS.

X := {x;}j-, by minimizing || g — jfix||* subject to the constrait’_, m; = 1. Herepuq is the
mean embedding of the mixture modgland i x is the empirical mean embedding obtained from
X. Based on different estimators pfy, we evaluate the resultant modglby the negative log-
likelihood score on the test data. The parame(efs8;, o) are initialized by the best one obtained
from the K-means algorithm with 50 initializations. Throughout, ve#:s= 5 and use 25% of each
dataset as a test set.

Table 2: The average negative log-likelihood evaluatedertdst set. The results are obtained from
30 repetitions of the experiment. The boldface represaetstatistically significant results.
[ Dataset [ KME S-KMSE F-KMSE Landweber AcclLand TterTik TSVD |

ionosphere| 36.1769 36.1402 36.1622 36.1204 36.1554 36.1334 36.1447
glass 10.7855 10.7403 10.7448 10.7099 10.7541 10.9078 10.7791L
bodyfat 18.1964 18.1158 18.1810 18.1607 18.1941 18.1267 18.1061
housing 14.3016 14.2195 14.0409 14.2499 141983 14.2868 14.3129
vowel 13.9253 13.8426 13.8817 13.8337 14.1368 13.8633 13.8375
svmguide2| 28.1091 28.0546 27.9640 28.1052 27.9693 28.0417 28.1128
vehicle 18.5295 18.3693 18.2547 18.4873 18.3124 18.412818.3910
wine 16.7668 16.7548 16.7457 16.7596 16.6790 16.6954 16.5719
wdbc 35.1916 35.1814  35.0023 35.1402  35.1366 35.1881 35.1850

Table2 reports the results on real data. In general, the mixtureai@abtained from the proposed
shrinkage estimators tend to achieve lower negative kagiiood score than that obtained from the
standard empirical estimator. Moreover, we can obsenvetiiearelative performance of different
filter functions vary across datasets, suggesting thatlditian to potential gain from shrinkage, in-
corporating prior knowledge through the choice of filterdtion could lead to further improvement.

6 Conclusion

We shows that several shrinkage strategies can be adopitegitove the kernel mean estimation.
This paper considers the spectral filtering approach as fosigch strategies. Compared to previous
work [1], our estimators take into account the specifics of kernghods and meaningful prior

knowledge through the choice of filter functions, resultimg wider class of shrinkage estimators.
The theoretical analysis also reveals a fundamental gityilto standard supervised setting. Our
estimators are simple to implement and work well in practiceevidenced by the empirical results.
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