NIPS Proceedingsβ

Real-Time Inference for a Gamma Process Model of Neural Spiking

Part of: Advances in Neural Information Processing Systems 26 (NIPS 2013)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


With simultaneous measurements from ever increasing populations of neurons, there is a growing need for sophisticated tools to recover signals from individual neurons. In electrophysiology experiments, this classically proceeds in a two-step process: (i) threshold the waveforms to detect putative spikes and (ii) cluster the waveforms into single units (neurons). We extend previous Bayesian nonparamet- ric models of neural spiking to jointly detect and cluster neurons using a Gamma process model. Importantly, we develop an online approximate inference scheme enabling real-time analysis, with performance exceeding the previous state-of-the- art. Via exploratory data analysis—using data with partial ground truth as well as two novel data sets—we find several features of our model collectively contribute to our improved performance including: (i) accounting for colored noise, (ii) de- tecting overlapping spikes, (iii) tracking waveform dynamics, and (iv) using mul- tiple channels. We hope to enable novel experiments simultaneously measuring many thousands of neurons and possibly adapting stimuli dynamically to probe ever deeper into the mysteries of the brain.