
Optimistic Concurrency Control for
Distributed Unsupervised Learning

Xinghao Pan1 Joseph Gonzalez1 Stefanie Jegelka1 Tamara Broderick1,2 Michael I. Jordan1,2

1Department of Electrical Engineering and Computer Science, and 2Department of Statistics
University of California, Berkeley

Berkeley, CA USA 94720
{xinghao,jegonzal,stefje,tab,jordan}@eecs.berkeley.edu

Abstract

Research on distributed machine learning algorithms has focused primarily on one
of two extremes—algorithms that obey strict concurrency constraints or algorithms
that obey few or no such constraints. We consider an intermediate alternative in
which algorithms optimistically assume that conflicts are unlikely and if conflicts
do arise a conflict-resolution protocol is invoked. We view this “optimistic con-
currency control” paradigm as particularly appropriate for large-scale machine
learning algorithms, particularly in the unsupervised setting. We demonstrate our
approach in three problem areas: clustering, feature learning and online facility lo-
cation. We evaluate our methods via large-scale experiments in a cluster computing
environment.

1 Introduction

The desire to apply machine learning to increasingly larger datasets has pushed the machine learning
community to address the challenges of distributed algorithm design: partitioning and coordinating
computation across the processing resources. In many cases, when computing statistics of iid data or
transforming features, the computation factors according to the data and coordination is only required
during aggregation. For these embarrassingly parallel tasks, the machine learning community has
embraced the map-reduce paradigm, which provides a template for constructing distributed algorithms
that are fault tolerant, scalable, and easy to study.

However, in pursuit of richer models, we often introduce statistical dependencies that require more
sophisticated algorithms (e.g., collapsed Gibbs sampling or coordinate ascent) which were developed
and studied in the serial setting. Because these algorithms iteratively transform a global state,
parallelization can be challenging and often requires frequent and complex coordination.

Recent efforts to distribute these algorithms can be divided into two primary approaches. The mutual
exclusion approach, adopted by [1] and [2], guarantees a serializable execution preserving the theo-
retical properties of the serial algorithm but at the expense of parallelism and costly locking overhead.
Alternatively, in the coordination-free approach, proposed by [3] and [4], processors communi-
cate frequently without coordination minimizing the cost of contention but leading to stochasticity,
data-corruption, and requiring potentially complex analysis to prove algorithm correctness.

In this paper we explore a third approach, optimistic concurrency control (OCC) [5] which offers
the performance gains of the coordination-free approach while at the same time ensuring a serializable
execution and preserving the theoretical properties of the serial algorithm. Like the coordination-
free approach, OCC exploits the infrequency of data-corrupting operations. However, instead of
allowing occasional data-corruption, OCC detects data-corrupting operations and applies correcting
computation. As a consequence, OCC automatically ensures correctness, and the analysis is only
necessary to guarantee optimal scaling performance.

1

We apply OCC to distributed nonparametric unsupervised learning—including but not limited to
clustering—and implement distributed versions of the DP-Means [6], BP-Means [7], and online
facility location (OFL) algorithms. We demonstrate how to analyze OCC in the context of the
DP-Means algorithm and evaluate the empirical scalability of the OCC approach on all three of the
proposed algorithms. The primary contributions of this paper are:

1. Concurrency control approach to distributing unsupervised learning algorithms.

2. Reinterpretation of online nonparametric clustering in the form of facility location with
approximation guarantees.

3. Analysis of optimistic concurrency control for unsupervised learning.

4. Application to feature modeling and clustering.

2 Optimistic Concurrency Control

Many machine learning algorithms iteratively transform some global state (e.g., model parameters or
variable assignment) giving the illusion of serial dependencies between each operation. However,
due to sparsity, exchangeability, and other symmetries, it is often the case that many, but not all, of
the state-transforming operations can be computed concurrently while still preserving serializability:
the equivalence to some serial execution where individual operations have been reordered.

This opportunity for serializable concurrency forms the foundation of distributed database systems.
For example, two customers may concurrently make purchases exhausting the inventory of unrelated
products, but if they try to purchase the same product then we may need to serialize their purchases
to ensure sufficient inventory. One solution (mutual exclusion) associates locks with each product
type and forces each purchase of the same product to be processed serially. This might work for an
unpopular, rare product but if we are interested in selling a popular product for which we have a large
inventory the serialization overhead could lead to unnecessarily slow response times. To address this
problem, the database community has adopted optimistic concurrency control (OCC) [5] in which
the system tries to satisfy the customers requests without locking and corrects transactions that could
lead to negative inventory (e.g., by forcing the customer to checkout again).

Optimistic concurrency control exploits situations where most operations can execute concurrently
without conflicting or violating serialization invariants. For example, given sufficient inventory the
order in which customers are satisfied is immaterial and concurrent operations can be executed
serially to yield the same final result. However, in the rare event that inventory is nearly depleted
two concurrent purchases may not be serializable since the inventory can never be negative. By
shifting the cost of concurrency control to rare events we can admit more costly concurrency control
mechanisms (e.g., re-computation) in exchange for an efficient, simple, coordination-free execution
for the majority of the events.

Formally, to apply OCC we must define a set of transactions (i.e., operations or collections of
operations), a mechanism to detect when a transaction violates serialization invariants (i.e., cannot
be executed concurrently), and a method to correct (e.g., rollback) transactions that violate the
serialization invariants. Optimistic concurrency control is most effective when the cost of validating
concurrent transactions is small and conflicts occur infrequently.

Machine learning algorithms are ideal for optimistic concurrency control. The conditional inde-
pendence structure and sparsity in our models and data often leads to sparse parameter updates
substantially reducing the chance of conflicts. Similarly, symmetry in our models often provides the
flexibility to reorder serial operations while preserving algorithm invariants. Because the models
encode the dependency structure, we can easily detect when an operation violates serial invariants
and correct by rejecting the change and rerunning the computation. Alternatively, we can exploit the
semantics of the operations to resolve the conflict by accepting a modified update. As a consequence
OCC allows us to easily construct provably correct and efficient distributed algorithms without the
need to develop new theoretical tools to analyze complex non-deterministic distributed behavior.

2

2.1 The OCC Pattern for Machine Learning

Optimistic concurrency control can be distilled to a simple pattern (meta-algorithm) for the design
and implementation of distributed machine learning systems. We begin by evenly partitioning N
data points (and the corresponding computation) across the P available processors. Each processor
maintains a replicated view of the global state and serially applies the learning algorithm as a sequence
of operations on its assigned data and the global state. If an operation mutates the global state in a
way that preserves the serialization invariants then the operation is accepted locally and its effect on
the global state, if any, is eventually replicated to other processors.

However, if an operation could potentially conflict with operations on other processors then it is
sent to a unique serializing processor where it is rejected or corrected and the resulting global state
change is eventually replicated to the rest of the processors. Meanwhile the originating processor
either tentatively accepts the state change (if a rollback operator is defined) or proceeds as though the
operation has been deferred to some point in the future.

While it is possible to execute this pattern asynchronously with minimal coordination, for simplicity
we adopt the bulk-synchronous model of [8] and divide the computation into epochs. Within an
epoch t, b data points B(p, t) are evenly assigned to each of the P processors. Any state changes
or serialization operations are transmitted at the end of the epoch and processed before the next
epoch. While potentially slower than an asynchronous execution, the bulk-synchronous execution is
deterministic and can be easily expressed using existing systems like Hadoop or Spark [9].

3 OCC for Unsupervised Learning

Much of the existing literature on distributed machine learning algorithms has focused on classification
and regression problems, where the underlying model is continuous. In this paper we apply the OCC
pattern to machine learning problems that have a more discrete, combinatorial flavor—in particular
unsupervised clustering and latent feature learning problems. These problems exhibit symmetry
via their invariance to both data permutation and cluster or feature permutation. Together with the
sparsity of interacting operations in their existing serial algorithms, these problems offer a unique
opportunity to develop OCC algorithms.

The K-means algorithm provides a paradigm example; here the inferential goal is to partition the
data. Rather than focusing solely on K-means, however, we have been inspired by recent work
in which a general family of K-means-like algorithms have been obtained by taking Bayesian
nonparametric (BNP) models based on combinatorial stochastic processes such as the Dirichlet
process, the beta process, and hierarchical versions of these processes, and subjecting them to small-
variance asymptotics where the posterior probability under the BNP model is transformed into a
cost function that can be optimized [7]. The algorithms considered to date in this literature have
been developed and analyzed in the serial setting; our goal is to explore distributed algorithms for
optimizing these cost functions that preserve the structure and analysis of their serial counterparts.

3.1 OCC DP-Means

We first consider the DP-means algorithm (Alg. 1) introduced by [6]. Like the K-means algorithm,
DP-Means alternates between updating the cluster assignment zi for each point xi and recomputing
the centroids C = {µk}Kk=1 associated with each clusters. However, DP-Means differs in that the
number of clusters is not fixed a priori. Instead, if the distance from a given data point to all existing
cluster centroids is greater than a parameter λ, then a new cluster is created. While the second phase
is trivially parallel, the process of introducing clusters in the first phase is inherently serial. However,
clusters tend to be introduced infrequently, and thus DP-Means provides an opportunity for OCC.

In Alg. 3 we present an OCC parallelization of the DP-Means algorithm in which each iteration
of the serial DP-Means algorithm is divided into N/(Pb) bulk-synchronous epochs. The data is
evenly partitioned {xi}i∈B(p,t) across processor-epochs into blocks of size b = |B(p, t)|. During
each epoch t, each processor p evaluates the cluster membership of its assigned data {xi}i∈B(p,t)
using the cluster centers C from the previous epoch and optimistically proposes a new set of cluster
centers Ĉ. At the end of each epoch the proposed cluster centers, Ĉ, are serially validated using Alg. 2.

3

Algorithm 1: Serial DP-means
Input: data {xi}Ni=1, threshold λ
C ← ∅
while not converged do

for i = 1 to N do
µ∗ ← argminµ∈C ‖xi − µ‖
if ‖xi − µ∗‖ > λ then

zi ← xi
C ← C ∪ xi // New cluster

else zi ← µ∗ // Use nearest

for µ ∈ C do // Recompute Centers
µ← Mean({xi | zi = µ})

Output: Accepted cluster centers C

Algorithm 2: DPValidate
Input: Set of proposed cluster centers Ĉ
C ← ∅
for x ∈ Ĉ do

µ∗ ← argminµ∈C ‖x− µ‖
if ‖xi − µ∗‖ < λ then // Reject

Ref(x)← µ∗ // Rollback Assgs

else C ← C ∪ x // Accept

Output: Accepted cluster centers C

Algorithm 3: Parallel DP-means
Input: data {xi}Ni=1, threshold λ
Input: Epoch size b and P processors
Input: Partitioning B(p, t) of data {xi}i∈B(p,t) to

processor-epochs where b = |B(p, t)|
C ← ∅
while not converged do

for epoch t = 1 to N/(Pb) do
Ĉ ← ∅ // New candidate centers
for p ∈ {1, . . . , P} do in parallel

// Process local data
for i ∈ B(p, t) do

µ∗ ← argminµ∈C ‖xi − µ‖
// Optimistic Transaction
if ‖xi − µ∗‖ > λ then

zi ← Ref(xi)

Ĉ ← Ĉ ∪ xi
else zi ← µ∗ // Always Safe

// Serially validate clusters

C ← C ∪ DPValidate(Ĉ)
for µ ∈ C do // Recompute Centers

µ← Mean({xi | zi = µ})
Output: Accepted cluster centers C

Figure 1: The Serial DP-Means algorithm and distributed implementation using the OCC pattern.

The validation process accepts cluster centers that are not covered by (i.e., not within λ of) already
accepted cluster centers. When a cluster center is rejected we update its reference to point to the
already accepted center, thereby correcting the original point assignment.

3.2 OCC Facility Location

The DP-Means objective turns out to be equivalent to the classic Facility Location (FL) objective:
J(C) =∑x∈X minµ∈C ‖x− µ‖2 + λ2|C|,which selects the set of cluster centers (facilities) µ ∈ C
that minimizes the shortest distance ‖x− µ‖2 to each point (customer) x as well as the penalized
cost of the clusters λ2 |C|. However, while DP-Means allows the clusters to be arbitrary points (e.g.,
C ∈ RD), FL constrains the clusters to be points C ⊆ F in a set of candidate locations F . Hence,
we obtain a link between combinatorial Bayesian models and FL allowing us to apply algorithms
with known approximation bounds to Bayesian inspired nonparametric models. As we will see in
Section 4, our OCC algorithm provides constant-factor approximations for both FL and DP-means.

Facility location has been studied intensely. We build on the online facility location (OFL) algorithm
described by Meyerson [10]. The OFL algorithm processes each data point x serially in a single pass
by either adding x to the set of clusters with probability min(1,minµ∈C ‖x− µ‖2 /λ2) or assigning
x to the nearest existing cluster. Using OCC we are able to construct a distributed OFL algorithm
(Alg. 4) which is nearly identical to the OCC DP-Means algorithm (Alg. 3) but which provides
strong approximation bounds. The OCC OFL algorithm differs only in that clusters are introduced
and validated stochastically—the validation process ensures that the new clusters are accepted with
probability equal to the serial algorithm.

3.3 OCC BP-Means

BP-means is an algorithm for learning collections of latent binary features, providing a way to define
groupings of data points that need not be mutually exclusive or exhaustive like clusters.

4

Algorithm 4: Parallel OFL
Input: Same as DP-Means
for epoch t = 1 to N/(Pb) do Ĉ ← ∅

for p ∈ {1, . . . , P} do in parallel
for i ∈ B(p, t) do

d← minµ∈C ‖xi − µ‖
with probability min

{
d2, λ2

}
/λ2

Ĉ ← Ĉ ∪ (xi, d)

C ← C ∪ OFLValidate(Ĉ)
Output: Accepted cluster centers C

Algorithm 5: OFLValidate

Input: Set of proposed cluster centers Ĉ
C ← ∅
for (x, d) ∈ Ĉ do

d∗ ← minµ∈C ‖x− µ‖
with probability min

{
d∗2, d2

}
/d2

C ← C ∪ x // Accept

Output: Accepted cluster centers C

Figure 2: The OCC algorithm for Online Facility Location (OFL).

As with serial DP-means, there are two phases in serial BP-means (Alg. 6). In the first phase,
each data point xi is labeled with binary assignments from a collection of features (zik = 0 if xi
doesn’t belong to feature k; otherwise zik = 1) to construct a representation xi ≈

∑
k zikfk. In the

second phase, parameter values (the feature means fk ∈ Ĉ) are updated based on the assignments.
The first step also includes the possibility of introducing an additional feature. While the second
phase is trivially parallel, the inherently serial nature of the first phase combined with the infrequent
introduction of new features points to the usefulness of OCC in this domain.

The OCC parallelization for BP-means follows the same basic structure as OCC DP-means. Each
transaction operates on a data point xi in two phases. In the first, analysis phase, the optimal
representation

∑
k zikfk is found. If xi is not well represented (i.e., ‖xi −

∑
k zikfk‖ > λ), the

difference is proposed as a new feature in the second validation phase. At the end of epoch t,
the proposed features {fnewi } are serially validated to obtain a set of accepted features C̃. For
each proposed feature fnewi , the validation process first finds the optimal representation fnewi ≈∑
fk∈C̃ zikfk using newly accepted features. If fnewi is not well represented, the difference fnewi −∑
fk∈C̃ zikfk is added to C̃ and accepted as a new feature.

Finally, to update the feature means, let F be the K-row matrix of feature means. The feature
means update F ← (ZTZ)−1ZTX can be evaluated as a single transaction by computing the
sums ZTZ =

∑
i ziz

T
i (where zi is a K × 1 column vector so zizTi is a K × K matrix) and

ZTX =
∑
i zix

T
i in parallel.

We present the pseudocode for the OCC parallelization of BP-means in Appendix A.

4 Analysis of Correctness and Scalability

In contrast to the coordination-free pattern in which scalability is trivial and correctness often requires
strong assumptions or holds only in expectation, the OCC pattern leads to simple proofs of correctness
and challenging scalability analysis. However, in many cases it is preferable to have algorithms that
are correct and probably fast rather than fast and possibly correct. We first establish serializability:

Theorem 4.1 (Serializability). The distributed DP-means, OFL, and BP-means algorithms are
serially equivalent to DP-means, OFL and BP-means, respectively.

The proof (Appendix B) of Theorem 4.1 is relatively straightforward and is obtained by constructing
a permutation function that describes an equivalent serial execution for each distributed execution.
The proof can easily be extended to many other machine learning algorithms.

Serializability allows us to easily extend important theoretical properties of the serial algorithm to the
distributed setting. For example, by invoking serializability, we can establish the following result for
the OCC version of the online facility location (OFL) algorithm:

5

Theorem 4.2. If the data is randomly ordered, then the OCC OFL algorithm provides a constant-
factor approximation for the DP-means objective. If the data is adversarially ordered, then OCC
OFL provides a log-factor approximation to the DP-means objective.

The proof (Appendix B) of Theorem 4.2 is first derived in the serial setting then extended to
the distributed setting through serializability. In contrast to divide-and-conquer schemes, whose
approximation bounds commonly depend multiplicatively on the number of levels [11], Theorem 4.2 is
unaffected by distributed processing and has no communication or coarsening tradeoffs. Furthermore,
to retain the same factors as a batch algorithm on the full data, divide-and-conquer schemes need a
large number of preliminary centers at lower levels [11, 12]. In that case, the communication cost
can be high, since all proposed clusters are sent at the same time, as opposed to the OCC approach.
We address the communication overhead (the number of rejections) for our scheme next.

Scalability The scalability of the OCC algorithms depends on the number of transactions that
are rejected during validation (i.e., the rejection rate). While a general scalability analysis can be
challenging, it is often possible to gain some insight into the asymptotic dependencies by making
simplifying assumptions. In contrast to the coordination-free approach, we can still safely apply OCC
algorithms in the absence of a scalability analysis or when simplifying assumptions do not hold.

To illustrate the techniques employed in OCC scalability analysis we study the DP-Means algorithm,
whose scalability limiting factor is determined by the number of points that must be serially validated.
We show that the communication cost only depends on the number of clusters and processing
resources and does not directly depend on the number of data points. The proof is in Appendix C.

Theorem 4.3 (DP-Means Scalability). Assume N data points are generated iid to form a random
number (KN) of well-spaced clusters of diameter λ: λ is an upper bound on the distances within
clusters and a lower bound on the distance between clusters. Then the expected number of serially
validated points is bounded above by Pb+E [KN] for P processors and b points per epoch.

Under the separation assumptions of the theorem, the number of clusters present in N data points,
KN , is exactly equal to the number of clusters found by DP-Means in N data points; call this latter
quantity kN . The experimental results in Figure 3 suggest that the bound of Pb + kN may hold
more generally beyond the assumptions above. Since the master must process at least kN points, the
overhead caused by rejections is Pb and independent of N .

5 Evaluation

For our experiments, we generated synthetic data for clustering (DP-means and OFL) and feature
modeling (BP-means). The cluster and feature proportions were generated nonparametrically as
described below. All data points were generated in R16 space. We fixed threshold parameter λ = 1.

Clustering: The cluster proportions and indicators were generated simultaneously using the stick-
breaking procedure for Dirichlet processes—‘sticks’ are ‘broken’ on-the-fly to generate new clusters
as necessary. For our experiments, we used a fixed concentration parameter θ = 1. Cluster means
were sampled µk ∼ N(0, I16), and data points were generated at xi ∼ N(µzi ,

1
4I16).

Feature modeling: We use the stick-breaking procedure of [13] to generate feature weights. Un-
like with Dirichlet processes, we are unable to perform stick-breaking on-the-fly with Beta pro-
cesses. Instead, we generate enough features so that with high probability (> 0.9999) the re-
maining non-generated features will have negligible weights (< 0.0001). The concentration pa-
rameter was also fixed at θ = 1. We generated feature means fk ∼ N(0, I16) and data points
xi ∼ N(

∑
k zikfk,

1
4I16).

5.1 Simulated experiments

To test the efficiency of our algorithms, we simulated the first iteration (one complete pass over all
the data, where most clusters / features are created and thus greatest coordination is needed) of each
algorithm in MATLAB. The number of data points, N , was varied from 256 to 2560 in intervals of
256. We also varied Pb, the number of data points processed in one epoch, from 16 to 256 in powers
of 2. For each value of N and Pb, we empirically measured kN , the number of accepted clusters /

6

(a) OCC DP-means (b) OCC OFL (c) OCC BP-means

Figure 3: Simulated distributed DP-means, OFL and BP-means: expected number of data points proposed but
not accepted as new clusters / features is independent of size of data set.

features, and MN , the number of proposed clusters / features. This was repeated 400 times to obtain
the empirical average Ê[MN − kN] of the number of rejections.

For OCC DP-means, we observe Ê[MN − kN] is bounded above by Pb (Fig. 3a), and that this
bound is independent of the data set size, even when the assumptions of Thm 4.3 are violated. (We
also verified that similar empirical results are obtained when the assumptions are not violated; see
Appendix C.) The same behavior is observed for the other two OCC algorithms (Fig. 3b and Fig. 3c).

5.2 Distributed implementation and experiments

We also implemented1 the distributed algorithms in Spark [9], an open-source cluster computing
system. The DP-means and BP-means algorithms were initialized by pre-processing a small number
of data points (1/16 of the first Pb points)—this reduces the number of data points sent to the master
on the first epoch, while still preserving serializability of the algorithms. Our Spark implementations
were tested on Amazon EC2 by processing a fixed data set on 1, 2, 4, 8 m2.4xlarge instances. Ideally,
to process the same amount of data, an algorithm and implementation with perfect scaling would
take half the runtime on 8 machines as it would on 4, and so on. The plots in Figure 4 shows this
comparison by dividing all runtimes by the runtime on one machine.

DP-means: We ran the distributed DP-means algorithm on 227 ≈ 134M data points, using λ = 2.
The block size b was chosen to keep Pb = 223 ≈ 8M constant. The algorithm was run for 5 iterations
(complete pass over all data in 16 epochs). We were able to get perfect scaling (Figure 4a) in all but
the first iteration, when the master has to perform the most synchronization of proposed centers.

OFL: The distributed OFL algorithm was run on 220 ≈ 1M data points, using λ = 2. Unlike
DP-means and BP-means, OFL is a single-pass algorithm and we did not perform any initialization
clustering. The block size b was chosen such that Pb = 216 ≈ 66K data points are processed each
epoch, which gives us 16 epochs. Figure 4b shows that we get no scaling in the first epoch, where all
Pb data points are sent to the master. Scaling improves in the later epochs, as the master’s workload
decreases with fewer proposals but the workers’ workload increases with more centers.

BP-means: Distributed BP-means was run on 223 ≈ 8M data points, with λ = 1; block size was
chosen such that Pb = 219 ≈ 0.5M is constant. Five iterations were run, with 16 epochs per iteration.
As with DP-means, we were able to achieve nearly perfect scaling; see Figure 4c.

6 Related work

Others have proposed alternatives to mutual exclusion and coordination-free parallelism for machine
learning algorithm design. [14] proposed transforming the underlying model to expose additional
parallelism while preserving the marginal posterior. However, such constructions can be challenging
or infeasible and many hinder mixing or convergence. Likewise, [15] proposed a reparameterization of
the underlying model to expose additional parallelism through conditional independence. Additional

1Code will be made available at our project page https://amplab.cs.berkeley.edu/projects/ccml/.

7

(a) OCC DP-means (b) OCC OFL (c) OCC BP-means

Figure 4: Normalized runtime for distributed algorithms. Runtime of each iteration / epoch is divided by that
using 1 machine (P = 8). Ideally, the runtime with 2, 4, 8 machines (P = 16, 32, 64) should be respectively
1/2, 1/4, 1/8 of the runtime using 1 machine. OCC DP-means and BP-means obtain nearly perfect scaling for all
iterations. OCC OFL rejects a lot initially, but quickly gets better in later epochs.

work similar in spirit to ours using OCC-like techniques includes [16] who proposed an approximate
parallel sampling algorithm for the IBP which is made exact by introducing an additional Metropolis-
Hastings step, and [17] who proposed a look-ahead strategy in which future samples are computed
optimistically based on the likely outcomes of current samples.

There has been substantial work on scalable clustering algorithms [18, 19, 20]. Several authors
[11, 21, 22, 12] have proposed streaming approximation algorithms that rely on hierarchical divide-
and-conquer schemes. The approximation factors in these algorithms are multiplicative in the
hierarchy and demand a careful tradeoff between communication and approximation quality which is
obviated in the OCC framework. Several methods [12, 25, 21] first collect and then re-cluster a set
of centers, and therefore need to communicate all intermediate centers. Our approach avoids these
stages, since a center causes no rejections in the epochs after it is established: the rejection rate does
not grow with K. Finally, the OCC framework can easily integrate and exploit many of the ideas in
the cited works.

7 Discussion

In this paper we have shown how optimistic concurrency control can be usefully employed in the
design of distributed machine learning algorithms. As opposed to previous approaches, this preserves
correctness, in most cases at a small cost. We established the equivalence of our distributed OCC DP-
means, OFL and BP-means algorithms to their serial counterparts, thus preserving their theoretical
properties. In particular, the strong approximation guarantees of serial OFL translate immediately to
the distributed algorithm. Our theoretical analysis ensures OCC DP-means achieves high parallelism
without sacrificing correctness. We implemented and evaluated all three OCC algorithms on a
distributed computing platform and demonstrate strong scalability in practice.

We believe that there is much more to do in this vein. Indeed, machine learning algorithms have many
properties that distinguish them from classical database operations and may allow going beyond
the classic formulation of OCC. In particular we may be able to partially or probabilistically accept
non-serializable operations in a way that preserves underlying algorithm invariants. Laws of large
numbers and concentration theorems may provide tools for designing such operations. Moreover, the
conflict detection mechanism can be treated as a control knob, allowing us to softly switch between
stable, theoretically sound algorithms and potentially faster coordination-free algorithms.

Acknowledgments

This research is supported in part by NSF CISE Expeditions award CCF-1139158 and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, General Electric, Hortonworks, Intel, Microsoft, NetApp, Oracle, Samsung,
Splunk, VMware and Yahoo!. This material is also based upon work supported in part by the Office of Naval
Research under contract/grant number N00014-11-1-0688. X. Pan’s work is also supported in part by a DSO
National Laboratories Postgraduate Scholarship. T. Broderick’s work is supported by a Berkeley Fellowship.

8

References
[1] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel Gibbs sampling: From colored fields to thin

junction trees. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 324–332, 2011.

[2] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A framework for machine learning and data mining in the cloud. In Proceedings of
the 38th International Conference on Very Large Data Bases (VLDB, Istanbul, 2012.

[3] Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems (NIPS)
24, pages 693–701, Granada, 2011.

[4] Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexander J. Smola. Scalable
inference in latent variable models. In Proceedings of the 5th ACM International Conference on Web
Search and Data Mining (WSDM), 2012.

[5] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[6] Brian Kulis and Michael I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In
Proceedings of 29th International Conference on Machine Learning (ICML), Edinburgh, 2012.

[7] Tamara Broderick, Brian Kulis, and Michael I. Jordan. MAD-bayes: MAP-based asymptotic derivations
from Bayes. In Proceedings of the 30th International Conference on Machine Learning (ICML), 2013.

[8] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111,
1990.

[9] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, 2010.

[10] A. Meyerson. Online facility location. In Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science (FOCS), Las Vegas, 2001.

[11] A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams: Theory and practice.
IEEE Transactions on Knowledge and Data Engineering, 15(3):515–528, 2003.

[12] N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In Advances in Neural
Information Processing Systems (NIPS) 22, Vancouver, 2009.

[13] John Paisley, David Blei, and Michael I Jordan. Stick-breaking Beta processes and the Poisson process. In
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

[14] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for Latent Dirichlet Allocation.
In Advances in Neural Information Processing Systems (NIPS) 20, Vancouver, 2007.

[15] D. Lovell, J. Malmaud, R. P. Adams, and V. K. Mansinghka. ClusterCluster: Parallel Markov chain Monte
Carlo for Dirichlet process mixtures. ArXiv e-prints, April 2013.

[16] F. Doshi-Velez, D. Knowles, S. Mohamed, and Z. Ghahramani. Large scale nonparametric Bayesian
inference: Data parallelisation in the Indian Buffet process. In Advances in Neural Information Processing
Systems (NIPS) 22, Vancouver, 2009.

[17] Tianbing Xu and Alexander Ihler. Multicore Gibbs sampling in dense, unstructured graphs. In Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[18] I. Dhillon and D.S. Modha. A data-clustering algorithm on distributed memory multiprocessors. In
Workshop on Large-Scale Parallel KDD Systems, 2000.

[19] A. Das, M. Datar, A. Garg, and S. Ragarajam. Google news personalization: Scalable online collaborative
filtering. In Proceedings of the 16th World Wide Web Conference, Banff, 2007.

[20] A. Ene, S. Im, and B. Moseley. Fast clustering using MapReduce. In Proceedings of the 17th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, San Diego, 2011.

[21] M. Shindler, A. Wong, and A. Meyerson. Fast and accurate k-means for large datasets. In Advances in
Neural Information Processing Systems (NIPS) 24, Granada, 2011.

[22] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for clustering
problems. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003.

[23] Mihai Bǎdoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

[24] D. Feldman, A. Krause, and M. Faulkner. Scalable training of mixture models via coresets. In Advances in
Neural Information Processing Systems (NIPS) 24, Granada, 2011.

[25] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable kmeans++. In Proceedings
of the 38th International Conference on Very Large Data Bases (VLDB), Istanbul, 2012.

9

