NIPS Proceedingsβ

A Deep Architecture for Matching Short Texts

Part of: Advances in Neural Information Processing Systems 26 (NIPS 2013)

[PDF] [BibTeX] [Reviews]


Conference Event Type: Poster


Many machine learning problems can be interpreted as learning for matching two types of objects (e.g., images and captions, users and products, queries and documents). The matching level of two objects is usually measured as the inner product in a certain feature space, while the modeling effort focuses on mapping of objects from the original space to the feature space. This schema, although proven successful on a range of matching tasks, is insufficient for capturing the rich structure in the matching process of more complicated objects. In this paper, we propose a new deep architecture to more effectively model the complicated matching relations between two objects from heterogeneous domains. More specifically, we apply this model to matching tasks in natural language, e.g., finding sensible responses for a tweet, or relevant answers to a given question. This new architecture naturally combines the localness and hierarchy intrinsic to the natural language problems, and therefore greatly improves upon the state-of-the-art models.