NIPS Proceedingsβ

Supervised Sparse Analysis and Synthesis Operators

Part of: Advances in Neural Information Processing Systems 26 (NIPS 2013)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


In this paper, we propose a new and computationally efficient framework for learning sparse models. We formulate a unified approach that contains as particular cases models promoting sparse synthesis and analysis type of priors, and mixtures thereof. The supervised training of the proposed model is formulated as a bilevel optimization problem, in which the operators are optimized to achieve the best possible performance on a specific task, e.g., reconstruction or classification. By restricting the operators to be shift invariant, our approach can be thought as a way of learning analysis+synthesis sparsity-promoting convolutional operators. Leveraging recent ideas on fast trainable regressors designed to approximate exact sparse codes, we propose a way of constructing feed-forward neural networks capable of approximating the learned models at a fraction of the computational cost of exact solvers. In the shift-invariant case, this leads to a principled way of constructing task-specific convolutional networks. We illustrate the proposed models on several experiments in music analysis and image processing applications.