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Abstract

While several papers have investigated computationally and statistically efficient
methods for learning Gaussian mixtures, precise minimax bounds for their statisti-
cal performance as well as fundamental limits in high-dimensional settings are not
well-understood. In this paper, we provide precise information theoretic bounds
on the clustering accuracy and sample complexity of learning a mixture of two
isotropic Gaussians in high dimensions under small mean separation. If there is
a sparse subset of relevant dimensions that determine the mean separation, then
the sample complexity only depends on the number of relevant dimensions and
mean separation, and can be achieved by a simple computationally efficient pro-
cedure. Our results provide the first step of a theoretical basis for recent methods
that combine feature selection and clustering.

1 Introduction

Gaussian mixture models provide a simple framework for several machine learning problems in-
cluding clustering, density estimation and classification. Mixtures are especially appealing in high
dimensional problems. Perhaps the most common use of Gaussian mixtures is for clustering. Of
course, the statistical (and computational) behavior of these methods can degrade in high dimen-
sions. Inspired by the success of variable selection methods in regression, several authors have
considered variable selection for clustering. However, there appears to be no theoretical results
justifying the advantage of variable selection in high dimensional setting.

To see why some sort of variable selection might be useful, consider clustering n subjects using a
vector of d genes for each subject. Typically d is much larger than n which suggests that statistical
clustering methods will perform poorly. However, it may be the case that there are only a small
number of relevant genes in which case we might expect better behavior by focusing on this small
set of relevant genes.

The purpose of this paper is to provide precise bounds on clustering error with mixtures of Gaus-
sians. We consider both the general case where all features are relevant, and the special case where
only a subset of features are relevant. Mathematically, we model an irrelevant feature by requiring
the mean of that feature to be the same across clusters, so that the feature does not serve to differ-
entiate the groups. Throughout this paper, we use the probability of misclustering an observation,
relative to the optimal clustering if we had known the true distribution, as our loss function. This is
akin to using excess risk in classification.

This paper makes the following contributions:

• We provide information theoretic bounds on the sample complexity of learning a mixture
of two isotropic Gaussians with equal weight in the small mean separation setting that pre-
cisely captures the dimension dependence, and matches known sample complexity require-
ments for some existing algorithms. This also debunks the myth that there is a gap between
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statistical and computational complexity of learning mixture of two isotropic Gaussians for
small mean separation. Our bounds require non-standard arguments since our loss function
does not satisfy the triangle inequality.
• We consider the high-dimensional setting where only a subset of relevant dimensions deter-

mine the mean separation between mixture components and show that learning is substan-
tially easier as the sample complexity only depends on the sparse set of relevant dimensions.
This provides some theoretical basis for feature selection approaches to clustering.
• We show that a simple computationally feasible procedure nearly achieves the information

theoretic sample complexity even in high-dimensional sparse mean separation settings.

Related Work. There is a long and continuing history of research on mixtures of Gaussians. A
complete review is not feasible but we mention some highlights of the work most related to ours.

Perhaps the most popular method for estimating a mixture distribution is maximum likelihood. Un-
fortunately, maximizing the likelihood is NP-Hard. This has led to a stream of work on alternative
methods for estimating mixtures. These new algorithms use pairwise distances, spectral methods or
the method of moments.

Pairwise methods are developed in Dasgupta (1999), Schulman and Dasgupta (2000) and Arora and
Kannan (2001). These methods require the mean separation to increase with dimension. The first
one requires the separation to be

√
d while the latter two improve it to d1/4. To avoid this problem,

Vempala and Wang (2004) introduced the idea of using spectral methods for estimating mixtures
of spherical Gaussians which makes mean separation independent of dimension. The assumption
that the components are spherical was removed in Brubaker and Vempala (2008). Their method
only requires the components to be separated by a hyperplane and runs in polynomial time, but
requires n = Ω(d4 log d) samples. Other spectral methods include Kannan et al. (2005), Achlioptas
and McSherry (2005) and Hsu and Kakade (2013). The latter uses clever spectral decompositions
together with the method of moments to derive an effective algorithm.

Kalai et al. (2012) use the method of moments to get estimates without requiring separation between
components of the mixture components. A similar approach is given in Belkin and Sinha (2010).
Chaudhuri et al. (2009) give a modified k-means algorithm for estimating a mixture of two Gaus-
sians. For the large mean separation setting µ > 1, Chaudhuri et al. (2009) show that n = Ω̃(d/µ2)
samples are needed. They also provide an information theoretic bound on the necessary sample com-
plexity of any algorithm which matches the sample complexity of their method (up to log factors) in
d and µ. If the mean separation is small µ < 1, they show that n = Ω̃(d/µ4) samples are sufficient.
Our results for the small mean separation setting give a matching necessary condition. Assuming
the separation between the component means is not too sparse, Chaudhuri and Rao (2008) provide
an algorithm for learning the mixture that has polynomial computational and sample complexity.

Most of these papers are concerned with computational efficiency and do not give precise, statistical
minimax upper and lower bounds. None of them deal with the case we are interested in, namely, a
high dimensional mixture with sparse mean separation.

We should also point out that the results in different papers are not necessarily comparable since
different authors use different loss functions. In this paper we use the probability of misclassifying
a future observation, relative to how the correct distribution clusters the observation, as our loss
function. This should not be confused with the probability of attributing a new observation to the
wrong component of the mixture. The latter loss does not typically tend to zero as the sample
size increases. Our loss is similar to the excess risk used in classification where we compare the
misclassification rate of a classifier to the misclassification rate of the Bayes optimal classifier.

Finally, we remind the reader that our motivation for studying sparsely separated mixtures is that
this provides a model for variable selection in clustering problems. There are some relevant recent
papers on this problem in the high-dimensional setting. Pan and Shen (2007) use penalized mixture
models to do variable selection and clustering simultaneously. Witten and Tibshirani (2010) develop
a penalized version of k-means clustering. Related methods include Raftery and Dean (2006); Sun
et al. (2012) and Guo et al. (2010). The applied bioinformatics literature also contains a huge number
of heuristic methods for this problem. None of these papers provide minimax bounds for the clus-
tering error or provide theoretical evidence of the benefit of using variable selection in unsupervised
problems such as clustering.
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2 Problem Setup

In this paper, we consider the simple setting of learning a mixture of two isotropic Gaussians with
equal mixing weights,1 given n data points X1, . . . , Xn ∈ Rd drawn i.i.d. from a d-dimensional
mixture density function

pθ(x) =
1

2
f(x;µ1, σ

2I) +
1

2
f(x;µ2, σ

2I),

where f(·;µ,Σ) is the density of N (µ,Σ), σ > 0 is a fixed constant, and θ := (µ1, µ2) ∈ Θ. We
consider two classes Θ of parameters:

Θλ = {(µ1, µ2) : ‖µ1 − µ2‖ ≥ λ}
Θλ,s = {(µ1, µ2) : ‖µ1 − µ2‖ ≥ λ, ‖µ1 − µ2‖0 ≤ s} ⊆ Θλ.

The first class defines mixtures where the components have a mean separation of at least λ > 0.
The second class defines mixtures with mean separation λ > 0 along a sparse set of s ∈ {1, . . . , d}
dimensions. Also, let Pθ denote the probability measure corresponding to pθ.

For a mixture with parameter θ, the Bayes optimal classification, that is, assignment of a point
x ∈ Rd to the correct mixture component, is given by the function

Fθ(x) = argmax
i∈{1,2}

f(x;µi, σ
2I).

Given any other candidate assignment function F : Rd → {1, 2}, we define the loss incurred by F
as

Lθ(F ) = min
π
Pθ({x : Fθ(x) 6= π(F (x))})

where the minimum is over all permutations π : {1, 2} → {1, 2}. This is the probability of misclus-
tering relative to an oracle that uses the true distribution to do optimal clustering.

We denote by F̂n any assignment function learned from the data X1, . . . , Xn, also referred to as
estimator. The goal of this paper is to quantify how the minimax expected loss (worst case expected
loss for the best estimator)

Rn ≡ inf
F̂n

sup
θ∈Θ

EθLθ(F̂n)

scales with number of samples n, the dimension of the feature space d, the number of relevant di-
mensions s, and the signal-to-noise ratio defined as the ratio of mean separation to standard deviation
λ/σ. We will also demonstrate a specific estimator that achieves the minimax scaling.

For the purposes of this paper, we say that feature j is irrelevant if µ1(j) = µ2(j). Otherwise we
say that feature j is relevant.

3 Minimax Bounds

3.1 Small mean separation setting without sparsity

We begin without assuming any sparsity, that is, all features are relevant. In this case, comparing
the projections of the data to the projection of the sample mean onto the first principal component
suffices to achieve both minimax optimal sample complexity and clustering loss.
Theorem 1 (Upper bound). Define

F̂n(x) =

{
1 if xT v1(Σ̂n) ≥ µ̂Tnv1(Σ̂n)
2 otherwise.

where µ̂n = n−1
∑n
i=1Xi is the sample mean, Σ̂n = n−1

∑n
i=1(Xi−µ̂n)(Xi−µ̂n)T is the sample

covariance and v1(Σ̂n) denotes the eigenvector corresponding to the largest eigenvalue of Σ̂n. If
n ≥ max(68, 4d), then

sup
θ∈Θλ

EθLθ(F̂ ) ≤ 600 max

(
4σ2

λ2
, 1

)√
d log(nd)

n
.

1We believe our results should also hold in the unequal mixture weight setting without major modifications.
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Furthermore, if λσ ≥ 2 max(80, 14
√

5d), then

sup
θ∈Θλ

EθLθ(F̂ ) ≤ 17 exp
(
− n

32

)
+ 9 exp

(
− λ2

80σ2

)
.

We note that the estimator in Theorem 1 (and that in Theorem 3) does not use knowledge of σ2.
Theorem 2 (Lower bound). Assume that d ≥ 9 and λ

σ ≤ 0.2. Then

inf
F̂n

sup
θ∈Θλ

EθLθ(F̂n) ≥ 1

500
min

{√
log 2

3

σ2

λ2

√
d− 1

n
,

1

4

}
.

We believe that some of the constants (including lower bound on d and exact upper bound on λ/σ)
can be tightened, but the results demonstrate matching scaling behavior of clustering error with d, n
and λ/σ. Thus, we see (ignoring constants and log terms) that

Rn ≈
σ2

λ2

√
d

n
, or equivalently n ≈ d

λ4/σ4
for a constant target value of Rn.

The result is quite intuitive: the dependence on dimension d is as expected. Also we see that the rate
depends in a precise way on the signal-to-noise ratio λ/σ. In particular, the results imply that we
need d ≤ n.

In modern high-dimensional datasets, we often have d > n i.e. large number of features and not
enough samples. However, inference is usually tractable since not all features are relevant to the
learning task at hand. This sparsity of relevant feature set has been successfully exploited in super-
vised learning problems such as regression and classification. We show next that the same is true for
clustering under the Gaussian mixture model.

3.2 Sparse and small mean separation setting

Now we consider the case where there are s < d relevant features. Let S denote the set of relevant
features. We begin by constructing an estimator Ŝn of S as follows. Define

τ̂n =
1 + α

1− α
min

i∈{1,...,d}
Σ̂n(i, i), where

where

α =

√
6 log(nd)

n
+

2 log(nd)

n
.

Now let
Ŝn = {i ∈ {1, . . . , d} : Σ̂n(i, i) > τ̂n}.

Now we use the same method as before, but using only the features in Ŝn identified as relevant.
Theorem 3 (Upper bound). Define

F̂n(x) =

{
1 if xT

Ŝn
v1(Σ̂Ŝn) ≥ µ̂T

Ŝn
v1(Σ̂Ŝn)

2 otherwise

where xŜn are the coordinates of x restricted to Ŝn, and µ̂Ŝn and Σ̂Ŝn are the sample mean and

covariance of the data restricted to Ŝn. If n ≥ max(68, 4s), d ≥ 2 and α ≤ 1
4 , then

sup
θ∈Θλ,s

EθLθ(F̂ ) ≤ 603 max

(
16σ2

λ2
, 1

)√
s log(ns)

n
+ 220

σ
√
s

λ

(
log(nd)

n

) 1
4

.

Next we find the lower bound.
Theorem 4 (Lower bound). Assume that λσ ≤ 0.2, d ≥ 17, and that 5 ≤ s ≤ d+3

4 . Then

inf
F̂n

sup
θ∈Θλ,s

EθLθ(F̂n) ≥ 1

600
min

{√
8

45

σ2

λ2

√
s− 1

n
log

(
d− 1

s− 1

)
,

1

2

}
.
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We remark again that the constants in our bounds can be tightened, but the results suggest that

σ

λ

(
s2 log d

n

)1/4

� Rn �
σ2

λ2

√
s log d

n
,

or n = Ω

(
s2 log d

λ4/σ4

)
for a constant target value of Rn.

In this case, we have a gap between the upper and lower bounds for the clustering loss. Also, the
sample complexity can possibly be improved to scale as s (instead of s2) using a different method.
However, notice that the dimension only enters logarithmically. If the number of relevant dimensions
is small then we can expect good rates. This provides some justification for feature selection. We
conjecture that the lower bound is tight and that the gap could be closed by using a sparse principal
component method as in Vu and Lei (2012) to find the relevant features. However, that method is
combinatorial and so far there is no known computationally efficient method for implementing it
with similar guarantees.

We note that the upper bound is achieved by a two-stage method that first finds the relevant dimen-
sions and then estimates the clusters. This is in contrast to the methods described in the introduction
which do clustering and variable selection simultaneously. This raises an interesting question: is it
always possible to achieve the minimax rate with a two-stage procedure or are there cases where a
simultaneous method outperforms a two-stage procedure? Indeed, it is possible that in the case of
general covariance matrices (non-spherical) two-stage methods might fail. We hope to address this
question in future work.

4 Proofs of the Lower Bounds

The lower bounds for estimation problems rely on a standard reduction from expected error to hy-
pothesis testing that assumes the loss function is a semi-distance, which the clustering loss isn’t.
However, a local triangle inequality-type bound can be shown (Proposition 2). This weaker condi-
tion can then be used to lower-bound the expected loss, as stated in Proposition 1 (which follows
easily from Fano’s inequality).

The proof techniques of the sparse and non-sparse lower bounds are almost identical. The main dif-
ference is that in the non-sparse case, we use the Varshamov–Gilbert bound (Lemma 1) to construct
a set of sufficiently dissimilar hypotheses, whereas in the sparse case we use an analogous result for
sparse hypercubes (Lemma 2). See the supplementary material for complete proofs of all results.

In this section and the next, φ and Φ denote the univariate standard normal PDF and CDF.
Lemma 1 (Varshamov–Gilbert bound). Let Ω = {0, 1}m for m ≥ 8. There exists a subset
{ω0, ..., ωM} ⊆ Ω such that ω0 = (0, ..., 0), ρ(ωi, ωj) ≥ m

8 for all 0 ≤ i < j ≤ M , and
M ≥ 2m/8, where ρ denotes the Hamming distance between two vectors (Tsybakov (2009)).

Lemma 2. Let Ω = {ω ∈ {0, 1}m : ‖ω‖0 = s} for integers m > s ≥ 1 such that s ≤ m/4. There
exist ω0, ..., ωM ∈ Ω such that ρ(ωi, ωj) > s/2 for all 0 ≤ i < j ≤ M , and M ≥

(
m
s

)s/5 − 1
(Massart (2007), Lemma 4.10).

Proposition 1. Let θ0, ..., θM ∈ Θλ (or Θλ,s), M ≥ 2, 0 < α < 1/8, and γ > 0. If for all 1 ≤ i ≤
M , KL(Pθi , Pθ0) ≤ α logM

n , and if Lθi(F̂ ) < γ implies Lθj (F̂ ) ≥ γ for all 0 ≤ i 6= j ≤ M and
clusterings F̂ , then inf F̂n maxi∈[0..M ] EθiLθi(F̂n) ≥ 0.07γ.

Proposition 2. For any θ, θ′ ∈ Θλ, and any clustering F̂ , let τ = Lθ(F̂ ) +
√

KL(Pθ, Pθ′)/2. If
Lθ(Fθ′) + τ ≤ 1/2, then Lθ(Fθ′)− τ ≤ Lθ′(F̂ ) ≤ Lθ(Fθ′) + τ.

We will also need the following two results. Let θ = (µ0−µ/2, µ0+µ/2) and θ′ = (µ0−µ′/2, µ0+

µ′/2) for µ0, µ, µ
′ ∈ Rd such that ‖µ‖ = ‖µ′‖, and let cosβ = |µTµ′|

‖µ‖2 .

Proposition 3. Let g(x) = φ(x)(φ(x)− xΦ(−x)). Then 2g
(
‖µ‖
2σ

)
sinβ cosβ ≤ Lθ(Fθ′) ≤ tan β

π .

Proposition 4. Let ξ = ‖µ‖
2σ . Then KL(Pθ, Pθ′) ≤ ξ4(1− cosβ).
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Proof of Theorem 2. Let ξ = λ
2σ , and define ε = min

{√
log 2
3

σ2

λ
1√
n
, λ

4
√
d−1

}
.Define λ2

0 = λ2−(d−

1)ε2. Let Ω = {0, 1}d−1. For ω = (ω(1), ..., ω(d− 1)) ∈ Ω, let µω = λ0ed +
∑d−1
i=1 (2ω(i)− 1)εei

(where {ei}di=1 is the standard basis for Rd). Let θω =
(
−µω2 ,

µω
2

)
∈ Θλ.

By Proposition 4, KL(Pθω , Pθν ) ≤ ξ4(1− cosβω,ν) where cosβω,ν = 1− 2ρ(ω,ν)ε2

λ2 , ω, ν ∈ Ω, and

ρ is the Hamming distance, so KL(Pθω , Pθν ) ≤ ξ4 2(d−1)ε2

λ2 . By Proposition 3, since cosβω,ν ≥ 1
2 ,

Lθω (Fθν ) ≤ 1

π
tanβω,ν ≤

1

π

√
1 + cosβω,ν

cosβω,ν

√
1− cosβω,ν ≤

4

π

√
d− 1ε

λ
, and

Lθω (Fθν ) ≥ 2g(ξ) sinβω,ν cosβω,ν ≥ g(ξ)
√

1 + cosβω,ν
√

1− cosβω,ν ≥
√

2g(ξ)

√
ρ(ω, ν)ε

λ

where g(x) = φ(x)(φ(x) − xΦ(−x)). By Lemma 1, there exist ω0, ..., ωM ∈ Ω such that M ≥
2(d−1)/8 and ρ(ωi, ωj) ≥ d−1

8 for all 0 ≤ i < j ≤ M . For simplicity of notation, let θi = θωi for
all i ∈ [0..M ]. Then, for i 6= j ∈ [0..M ],

KL(Pθi , Pθj ) ≤ ξ4 2(d− 1)ε2

λ2
, Lθi(Fθj ) ≤

4

π

√
d− 1ε

λ
and Lθi(Fθj ) ≥

1

2
g(ξ)

√
d− 1ε

λ
.

Define γ = 1
4 (g(ξ)− 2ξ2)

√
d−1ε
λ . Then for any i 6= j ∈ [0..M ], and any F̂ such that Lθi(F̂ ) < γ,

Lθi(Fθj ) + Lθi(F̂ ) +

√
KL(Pθi , Pθj )

2
<

(
4

π
+

1

4
(g(ξ)− 2ξ2) + ξ2

) √
d− 1ε

λ
≤ 1

2

because, for ξ ≤ 0.1, by definition of ε,(
4

π
+

1

4
(g(ξ)− 2ξ2) + ξ2

) √
d− 1ε

λ
≤ 2

√
d− 1ε

λ
≤ 1

2
.

So, by Proposition 2, Lθj (F̂ ) ≥ γ. Also, KL(Pθi , Pθ0) ≤ (d− 1)ξ4 2ε2

λ2 ≤ logM
9n for all 1 ≤ i ≤M ,

because, by definition of ε, ξ4 2ε2

λ2 ≤ log 2
72n . So by Proposition 1 and the fact that ξ ≤ 0.1,

inf
F̂n

max
i∈[0..M ]

EθiLθi(F̂n) ≥ 0.07γ ≥ 1

500
min

{√
log 2

3

σ2

λ2

√
d− 1

n
,

1

4

}
and to complete the proof we use supθ∈Θλ

EθLθ(F̂n) ≥ maxi∈[0..M ] EθiLθi(F̂n) for any F̂n. �

Proof of Theorem 4. For simplicity, we state this construction for Θλ,s+1, assuming 4 ≤ s ≤ d−1
4 .

Let ξ = λ
2σ , and define ε = min

{√
8
45
σ2

λ

√
1
n log

(
d−1
s

)
, 1

2
λ√
s

}
. Define λ2

0 = λ2 − sε2. Let Ω =

{ω ∈ {0, 1}d−1 : ‖ω‖0 = s}. For ω = (ω(1), ..., ω(d − 1)) ∈ Ω, let µω = λ0ed +
∑d−1
i=1 ω(i)εei

(where {ei}di=1 is the standard basis for Rd). Let θω =
(
−µω2 ,

µω
2

)
∈ Θλ,s. By Lemma 2, there

exist ω0, ..., ωM ∈ Ω such that M ≥
(
d−1
s

)s/5 − 1 and ρ(ωi, ωj) ≥ s
2 for all 0 ≤ i < j ≤M . The

remainder of the proof is analogous to that of Theorem 2 with γ = 1
4 (g(ξ)−

√
2ξ2)

√
sε
λ . �

5 Proofs of the Upper Bounds

Propositions 5 and 6 below bound the error in estimating the mean and principal direction, and
can be obtained using standard concentration bounds and a variant of the Davis–Kahan theorem.
Proposition 7 relates these errors to the clustering loss. For the sparse case, Propositions 8 and 9
bound the added error induced by the support estimation procedure. See supplementary material for
proof details.

Proposition 5. Let θ = (µ0 − µ, µ0 + µ) for some µ0, µ ∈ Rd and X1, ..., Xn
i.i.d.∼ Pθ. For any

δ > 0, we have ‖µ0 − µ̂n‖ ≥ σ
√

2 max(d,8 log 1
δ )

n + ‖µ‖
√

2 log 1
δ

n with probability at least 1− 3δ.
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Proposition 6. Let θ = (µ0 − µ, µ0 + µ) for some µ0, µ ∈ Rd and X1, ..., Xn
i.i.d.∼ Pθ with

d > 1 and n ≥ 4d. Define cosβ = |v1(σ2I + µµT )T v1(Σ̂n)|. For any 0 < δ < d−1√
e

, if

max
(

σ2

‖µ‖2 ,
σ
‖µ‖

)√
max(d,8 log 1

δ )

n ≤ 1
160 , then with probability at least 1− 12δ − 2 exp

(
− n

20

)
,

sinβ ≤ 14 max

(
σ2

‖µ‖2
,
σ

‖µ‖

)√
d

√
10

n
log

d

δ
max

(
1,

10

n
log

d

δ

)
.

Proposition 7. Let θ = (µ0 − µ, µ0 + µ), and for some x0, v ∈ Rd with ‖v‖ = 1, let F̂ (x) = 1
if xT v ≥ xT0 v, and 2 otherwise. Define cosβ = |vTµ|/‖µ‖. If |(x0 − µ0)T v| ≤ σε1 + ‖µ‖ε2 for
some ε1 ≥ 0 and 0 ≤ ε2 ≤ 1

4 , and if sinβ ≤ 1√
5

, then

Lθ(F̂ ) ≤ exp

{
−1

2
max

(
0,
‖µ‖
2σ
− 2ε1

)2
}[

2ε1 + ε2
‖µ‖
σ

+ 2 sinβ

(
2 sinβ

‖µ‖
σ

+ 1

)]
.

Proof. Let r =
∣∣∣ (x0−µ0)T v

cos β

∣∣∣. Since the clustering loss is invariant to rotation and translation,

Lθ(F̂ ) ≤ 1

2

∫ ∞
−∞

1

σ
φ
(x
σ

)[
Φ

(
‖µ‖+ |x| tanβ + r

σ

)
− Φ

(
‖µ‖ − |x| tanβ − r

σ

)]
dx

≤
∫ ∞
−∞

φ(x)

[
Φ

(
‖µ‖
σ

)
− Φ

(
‖µ‖ − r

σ
− |x| tanβ

)]
dx.

Since tanβ ≤ 1
2 and ε2 ≤ 1

4 , we have r ≤ 2σε1 + 2‖µ‖ε2, and Φ
(
‖µ‖
σ

)
− Φ

(
‖µ‖−r
σ

)
≤

2
(
ε1 + ε2

‖µ‖
σ

)
φ
(

max
(

0, ‖µ‖2σ − 2ε1

))
. Defining A =

∣∣∣‖µ‖−rσ

∣∣∣,∫ ∞
−∞

φ(x)

[
Φ

(
‖µ‖ − r

σ

)
− Φ

(
‖µ‖ − r

σ
− |x| tanβ

)]
dx ≤ 2

∫ ∞
0

∫ A

A−x tan β

φ(x)φ(y)dydx

= 2

∫ ∞
−A sin β

∫ A cos β+(u+A sin β) tan β

A cos β

φ(u)φ(v)dudv ≤ 2φ (A) tanβ (A sinβ + 1)

≤ 2φ

(
max

(
0,
‖µ‖
2σ
− 2ε1

))
tanβ

((
2
‖µ‖
σ

+ 2ε1

)
sinβ + 1

)
where we used u = x cosβ − y sinβ and v = x sinβ + y cosβ in the second step. The bound now
follows easily.

Proof of Theorem 1. Using Propositions 5 and 6 with δ = 1√
n

, Proposition 7, and the fact that
(C + x) exp(−max(0, x− 4)2/8) ≤ (C + 6) exp(−max(0, x− 4)2/10) for all C, x > 0,

EθLθ(F̂ ) ≤ 600 max

(
4σ2

λ2
, 1

)√
d log(nd)

n

(it is easy to verify that the bounds are decreasing with ‖µ‖, so we use ‖µ‖ = λ
2 to bound the

supremum). In the d = 1 case Proposition 6 need not be applied, since the principal directions agree
trivially. The bound for λσ ≥ 2 max(80, 14

√
5d) can be shown similarly, using δ = exp

(
− n

32

)
. �

Proposition 8. Let θ = (µ0 − µ, µ0 + µ) for some µ0, µ ∈ Rd and X1, ..., Xn
i.i.d.∼ Pθ. For any

0 < δ < 1√
e

such that
√

6 log 1
δ

n ≤ 1
2 , with probability at least 1− 6dδ, for all i ∈ [d],

|Σ̂n(i, i)− (σ2 + µ(i)2)| ≤ σ2

√
6 log 1

δ

n
+ 2σ|µ(i)|

√
2 log 1

δ

n
+ (σ + |µ(i)|)2 2 log 1

δ

n
.

Proposition 9. Let θ = (µ0 − µ, µ0 + µ) for some µ0, µ ∈ Rd and X1, ..., Xn
i.i.d.∼ Pθ. Define

S(θ) = {i ∈ [d] : µ(i) 6= 0} and S̃(θ) = {i ∈ [d] : |µ(i)| ≥ 4σ
√
α}.

Assume that n ≥ 1, d ≥ 2, and α ≤ 1
4 . Then S̃(θ) ⊆ Ŝn ⊆ S(θ) with probability at least 1− 6

n .
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Proof. By Proposition 8, with probability at least 1− 6
n ,

|Σ̂n(i, i)− (σ2 + µ(i)2)| ≤ σ2

√
6 log(nd)

n
+ 2σ|µ(i)|

√
2 log(nd)

n
+ (σ + |µ(i)|)2 2 log(nd)

n

for all i ∈ [d]. Assume the above event holds. If S(θ) = [d], then of course Ŝn ⊆ S(θ). Otherwise,
for i /∈ S(θ), we have (1 − α)σ2 ≤ Σ̂n(i, i) ≤ (1 + α)σ2, so it is clear that Ŝn ⊆ S(θ). The
remainder of the proof is trivial if S̃(θ) = ∅ or S(θ) = ∅. Assume otherwise. For any i ∈ S(θ),

Σ̂n(i, i) ≥ (1− α)σ2 +

(
1− 2 log(nd)

n

)
µ(i)2 − 2ασ|µ(i)|.

By definition, |µ(i)| ≥ 4σ
√
α for all i ∈ S̃(θ), so (1+α)2

1−α σ2 ≤ Σ̂n(i, i) and i ∈ Ŝn (we ignore strict
equality above as a measure 0 event), i.e. S̃(θ) ⊆ Ŝn, which concludes the proof.

Proof of Theorem 3. Define S(θ) = {i ∈ [d] : µ(i) 6= 0} and S̃(θ) = {i ∈ [d] : |µ(i)| ≥ 4σ
√
α}.

Assume S̃(θ) ⊆ Ŝn ⊆ S(θ) (by Proposition 9, this holds with probability at least 1 − 6
n ). If

S̃(θ) = ∅, then we simply have EθLθ(F̂n) ≤ 1
2 .

Assume S̃(θ) 6= ∅. Let cos β̂ = |v1(Σ̂Ŝn)T v1(Σ)|, cos β̃ = |v1(ΣŜn)T v1(Σ)|, and cosβ =

|v1(Σ̂Ŝn)T v1(ΣŜn)| where Σ = σ2I + µµT , and for simplicity we define Σ̂Ŝn and ΣŜn to be

the same as Σ̂n and Σ in Ŝn, respectively, and 0 elsewhere. Then sin β̂ ≤ sin β̃ + sinβ, and

sin β̃ =
‖µ− µŜ(θ)‖
‖µ‖

≤
‖µ− µS̃(θ)‖
‖µ‖

≤
4σ
√
α

√
|S(θ)| − |S̃(θ)|
‖µ‖

≤ 8
σ
√
sα

λ
.

Using the same argument as the proof of Theorem 1, as long as the above bound is smaller than 1
2
√

5
,

EθLθ(F̂ ) ≤ 600 max

(
σ2(

λ
2 − 4σ

√
sα
)2 , 1

)√
s log(ns)

n
+ 104

σ
√
sα

λ
+

3

n
.

Using the fact Lθ(F̂ ) ≤ 1
2 always, and that α ≤ 1

4 implies log(nd)
n ≤ 1, the bound follows. �

6 Conclusion

We have provided minimax lower and upper bounds for estimating high dimensional mixtures. The
bounds show explicitly how the statistical difficulty of the problem depends on dimension d, sample
size n, separation λ and sparsity level s.

For clarity, we focused on the special case where there are two spherical components with equal
mixture weights. In future work, we plan to extend the results to general mixtures of k Gaussians.

One of our motivations for this work is the recent interest in variable selection methods to facilitate
clustering in high dimensional problems. Existing methods such as Pan and Shen (2007); Witten
and Tibshirani (2010); Raftery and Dean (2006); Sun et al. (2012) and Guo et al. (2010) provide
promising numerical evidence that variable selection does improve high dimensional clustering.
Our results provide some theoretical basis for this idea.

However, there is a gap between the results in this paper and the above methodology papers. In-
deed, as of now, there is no rigorous proof that the methods in those papers outperform a two stage
approach where the first stage screens for relevant features and the second stage applies standard
clustering methods on the features found in the first stage. We conjecture that there are conditions
under which simultaneous feature selection and clustering outperforms a two stage method. Settling
this question will require the aforementioned extension of our results to the general mixture case.
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