NIPS Proceedingsβ

Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion

Part of: Advances in Neural Information Processing Systems 26 (NIPS 2013)

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We introduce a new objective function for pool-based Bayesian active learning with probabilistic hypotheses. This objective function, called the policy Gibbs error, is the expected error rate of a random classifier drawn from the prior distribution on the examples adaptively selected by the active learning policy. Exact maximization of the policy Gibbs error is hard, so we propose a greedy strategy that maximizes the Gibbs error at each iteration, where the Gibbs error on an instance is the expected error of a random classifier selected from the posterior label distribution on that instance. We apply this maximum Gibbs error criterion to three active learning scenarios: non-adaptive, adaptive, and batch active learning. In each scenario, we prove that the criterion achieves near-maximal policy Gibbs error when constrained to a fixed budget. For practical implementations, we provide approximations to the maximum Gibbs error criterion for Bayesian conditional random fields and transductive Naive Bayes. Our experimental results on a named entity recognition task and a text classification task show that the maximum Gibbs error criterion is an effective active learning criterion for noisy models.