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Abstract

We consider a popular problem in finance, option pricing, through the lens of an
online learning game between Nature and an Investor. In the Black-Scholes op-
tion pricing model from 1973, the Investor can continuously hedge the risk of
an option by trading the underlying asset, assuming that the asset’s price fluctu-
ates according to Geometric Brownian Motion (GBM). We consider a worst-case
model, in which Nature chooses a sequence of price fluctuations under a cumula-
tive quadratic volatility constraint, and the Investor can make a sequence of hedg-
ing decisions. Our main result is to show that the value of our proposed game,
which is the “regret” of hedging strategy, converges to the Black-Scholes option
price. We use significantly weaker assumptions than previous work—for instance,
we allow large jumps in the asset price—and show that the Black-Scholes hedging
strategy is near-optimal for the Investor even in this non-stochastic framework.

1 Introduction

An option is a financial contract that allows the purchase or sale of a given asset, such as a stock,
bond, or commodity, for a predetermined price on a predetermined date. The contract is named as
such because the transaction in question is optional for the purchaser of the contract. Options are
bought and sold for any number of reasons, but in particular they allow firms and individuals with
risk exposure to hedge against potential price fluctuations. Airlines, for example, have heavy fuel
costs and hence are frequent buyers of oil options.

What ought we pay for the privilege of purchasing an asset at a fixed price on a future expiration
date? The difficulty with this question, of course, is that while we know the asset’s previous prices,
we are uncertain as to its future price. In a seminal paper from 1973, Fischer Black and Myron
Scholes introduced what is now known as the Black-Scholes Option Pricing Model, which led to a
boom in options trading as well as a huge literature on the problem of derivative pricing [2]. Black
and Scholes had a key insight that a firm which had sold/purchased an option could “hedge” against
the future cost/return of the option by buying and selling the underlying asset as its price fluctuates.
Their model is based on stochastic calculus and requires a critical assumption that the asset’s price
behaves according to a Geometric Brownian Motion (GBM) with known drift and volatility.

The GBM assumption in particular implies that (almost surely) an asset’s price fluctuates continu-
ously. The Black-Scholes model additionally requires that the firm be able to buy and sell contin-
uously until the option’s expiration date. Neither of these properties are true in practice: the stock
market is only open eight hours per day, and stock prices are known to make significant jumps even
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during regular trading. These and other empirical observations have led to much criticism of the
Black-Scholes model.

An alternative model for option pricing was considered1 by DeMarzo et al. [3], who posed the
question: “Can we construct hedging strategies that are robust to adversarially chosen price fluc-
tuations?” Essentially, the authors asked if we may consider hedging through the lens of regret
minimization in online learning, an area that has proved fruitful, especially for obtaining guarantees
robust to worst-case conditions. Within this minimax option pricing framework, DeMarzo et al. pro-
vided a particular algorithm resembling the Weighted Majority and Hedge algorithms [5, 6] with a
nice bound.

Recently, Abernethy et al. [1] took the minimax option pricing framework a step further, analyzing
the zero-sum game being played between an Investor, who is attempting to replicate the option
payoff, and Nature, who is sequentially setting the price changes of the underlying asset. The
Investor’s goal is to “hedge” the payoff of the option as the price fluctuates, whereas Nature attempts
to foil the Investor by choosing a challenging sequence of price fluctuations. The value of this game
can be interpreted as the “minimax option price,” since it is what the Investor should pay for the
option against an adversarially chosen price path. The main result of Abernethy et al. was to show
that the game value approaches the Black-Scholes option price as the Investor’s trading frequency
increases. Put another way, the minimax price tends to the option price under the GBM assumption.
This lends significant further credibility to the Black-Scholes model, as it suggests that the GBM
assumption may already be a “worst-case model” in a certain sense.

The previous result, while useful and informative, left two significant drawbacks. First, their tech-
niques used minimax duality to compute the value of the game, but no particular hedging algorithm
for the Investor is given. This is in contrast to the Black-Scholes framework (as well as to the De-
Marzo et al.’s result [3]) in which a hedging strategy is given explicitly. Second, the result depended
on a strong constraint on Nature’s choice of price path: the multiplicative price variance is uniformly
constrained, which forbids price jumps and other large fluctuations.

In this paper, we resolve these two drawbacks. We consider the problem of minimax option pricing
with much weaker constraints: we restrict the sum over the length of the game of the squared price
fluctuations to be no more than a constant c, and we allow arbitrary price jumps, up to a bound ⇣. We
show that the minimax option price is exactly the Black-Scholes price of the option, up to an additive
term of O(c⇣1/4

). Furthermore, we give an explicit hedging strategy: this upper bound is achieved
when the Investor’s strategy is essentially a version of the Black-Scholes hedging algorithm.

2 The Black-Scholes Formula

Let us now briefly review the Black-Scholes pricing formula and hedging strategy. The derivation
requires some knowledge of continuous random walks and stochastic calculus—Brownian motion,
Itô’s Lemma, a second-order partial differential equation—and we shall only give a cursory treat-
ment of the material. For further development we recommend a standard book on stochastic cal-
culus, e.g. [8]. Let us imagine we have an underlying asset A whose price is fluctuating. We let
W (t) be a Brownian motion, also known as a Weiner process, with zero drift and unit variance; in
particular, W (0) = 0 and W (t) ⇠ N(0, t) for t > 0. We shall imagine that A’s price path G(t) is
described by a geometric Brownian motion with drift µ and volatility �, which we can describe via
the definition of a Brownian motion: G(t)

d

= exp{(µ� 1
2�2

)t + �W (t)}.

If an Investor purchases a European call option on some asset A (say, MSFT stock) with a strike
price of K > 0 that matures at time T , then the Investor has the right to buy a share of A at price K
at time T . Of course, if the market price of A at T is G(T ), then the Investor will only “exercise”
the option if G(T ) > K, since the Investor has no benefit of purchasing the asset at a price higher
than the market price. Hence, the payoff of a European call option has a profit function of the form
max{0, G(T ) �K}. Throughout the paper we shall use gEC(x) := max{0, x �K} to refer to the
payout of the European call when the price of asset A at time T is x (the parameter K is implicit).

1Although it does not have quite the same flavor, a similar approach was explored in the book of Vovk and
Shafer [7].
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We assume the current time is t. The Black-Scholes derivation begins with a guess: assume that the
“value” of the European call option can be described by a smooth function V(G(t), t), depending
only on the current price of the asset G(t) and the time to expiration T � t. We can immedi-
ately define a boundary condition on V , since at the expiration time T the value of the option is
V(G(T ), 0) = gEC(G(T )).

So how do we arrive at a value for the option at another time point t? We assume the Investor has
a hedging strategy, �(x, t) that determines the amount to invest when the current price is x and the
time is t. Notice that if the asset’s current price is G(t) and the Investor purchases �(G(t), t) dollars
of asset A at t, then the incremental amount of money made in an infinitesimal amount of time is
�(G(t), t) dG/G(t), since dG/G(t) is the instantaneous multiplicative price change at time t. Of
course, if the earnings of the Investor are guaranteed to exactly cancel out the infinitesimal change
in the value of the option dV(G(t), t), then the Investor is totally hedged with respect to the option
payout for any sample of G for the remaining time to expiration. In other words, we hope to achieve
dV(G, t) = �(G, t) dG/G. However, by Itô’s Lemma [8] we have the following useful identity:

dV(G, t) =

@V
@x

dG +

@V
@t

dt +

1

2

�2G2 @2V
@x2

dt. (1)

Black and Scholes proposed a generic hedging strategy, that the investor should invest

�(x, t) = x
@V
@x

(2)

dollars in the asset A when the price of A is x at time t. As mentioned, the goal of the Investor is
to hedge out risk so that it is always the case that dV(G, t) = �(G, t) dG/G. Combining this goal
with Equations (1) and (2), we have

@V
@t

+

1

2

�2x2 @2V
@x2

= 0. (3)

Notice the latter is an entirely non-stochastic PDE, and indeed it can be solved explicitly:

V(x, t) = E
Y

[gEC(x · exp(Y ))] where Y ⇠ N (� 1
2�2

(T � t), �2
(T � t)) (4)

Remark: While we have described the derivation for the European call option, with payoff function
gEC, the analysis above does not rely on this specific choice of g. We refer the reader to a standard
text on asset pricing for more on this [8].

3 The Minimax Hedging Game

We now describe a sequential decision protocol in which an Investor makes a sequence of trading
decisions on some underlying asset, with the goal of hedging away the risk of some option (or other
financial derivative) whose payout depends on the final price of the asset at the expiration time T .
We assume the Investor is allowed to make a trading decision at each of n time periods, and before
making this trade the investor observes how the price of the asset has changed since the previous
period. Without loss of generality, we can assume that the current time is 0 and the trading periods
occur at {T/n, 2T/n, . . . , 1}, although this will not be necessary for our analysis.

The protocol is as follows.
1: Initial price of asset is S = S0.
2: for i = 1, 2, . . . , n do
3: Investor hedges, invests �

i

2 R dollars in asset.
4: Nature selects a price fluctuation r

i

and updates price S  S(1 + r
i

).
5: Investor receives (potentially negative) profit of �

i

r
i

.
6: end for
7: Investor is charged the cost of the option, g(S) = g (S0 ·

Q

n

i=1(1 + r
i

)).

Stepping back for a moment, we see that the Investor is essentially trying to minimize the following
objective:

g

 

S0 ·
n

Y

i=1

(1 + r
i

)

!

�
n

X

i=1

�

i

r
i

.
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We can interpret the above expression as a form of regret: the Investor chose to execute a trading
strategy, earning him

P

n

i=1 �

i

r
i

, but in hindsight might have rather purchased the option instead,
with a payout of g (S0 ·

Q

n

i=1(1 + r
i

)). What is the best hedging strategy the Investor can execute
to minimize the difference between the option payoff and the gains/losses from hedging? Indeed,
how much regret may be suffered against a worst-case sequence of price fluctuations?

Constraining Nature. The cost of playing the above sequential game is clearly going to de-
pend on how much we expect the price to fluctuate. In the original Black-Scholes formula-
tion, the price volatility � is a major parameter in the pricing function. In the work of Aber-
nethy et al., a key assumption was that Nature may choose any r1, . . . , rn

with the constraint that
E[r2

i

| r1, . . . , ri�1] = O(1/n). 2 Roughly, this constraint means that in any ✏-sized time interval,
the price fluctuation variance shall be no more than ✏. This constraint, however, does not allow for
large price jumps during trading. In the present work, we impose a much weaker set of constraints,
described as follows:3

• TotVarConstraint: The total price fluctuation is bounded by a constant c:
P

n

i=1 r2
i

 c.
• JumpConstraint: Every price jump |r

i

| is no more than ⇣, for some ⇣ > 0 (which may
depend on n).

The first constraint above says that Nature is bounded by how much, in total, the asset’s price path
can fluctuate. The latter says that at no given time can the asset’s price jump more than a given value.
It is worth noting that if c � n⇣2 then TotVarConstraint is superfluous, whereas JumpConstraint
becomes superfluous if c < ⇣2.

The Minimax Option Price We are now in a position to define the value of the sequential option
pricing game using a minimax formulation. That is, we shall ask how much the Investor loses
when making optimal trading decisions against worst-case price fluctuations chosen by Nature. Let
V

(n)
⇣

(S; c, m) be the value of the game, measured by the investor’s loss, when the asset’s current
price is S � 0, the TotVarConstraint is c � 0, the JumpConstraint is ⇣ > 0, the total number of
trading rounds are n 2 N, and there are 0  m  n rounds remaining. We define recursively:

V
(n)
⇣

(S; c, m) = inf

�2R
sup

r : |r|min{⇣,

p
c}
��r + V

(n)
⇣

((1 + r)S; c� r2, m� 1), (5)

with the base case V
(n)
⇣

(S; c, 0) = g(S). Notice that the constraint under the supremum en-
forces both TotVarConstraint and JumpConstraint. For simplicity, we will write V

(n)
⇣

(S; c) :=

V
(n)
⇣

(S; c, n). This is the value of the game that we are interested in analyzing.

Towards establishing an upper bound on the value (5), we shall discuss the question of how to
choose the hedge parameter � on each round. We can refer to a “hedging strategy” in this game as
a function of the tuple (S, c,m, n, ⇣, g(·)) that returns hedge position. In our upper bound, in fact
we need only consider hedging strategies �(S, c) that depend on S and c; there certainly will be a
dependence on g(·) as well but we leave this implicit.

4 Asymptotic Results

The central focus of the present paper is the following question: “For fixed c and S, what is the
asymptotic behavior of the value V

(n)
⇣

(S; c)?” and “Is there a natural hedging strategy �(S, c) that
(roughly) achieves this value?” In other words, what is the minimax value of the option, as well
as the optimal hedge, when we fix the variance budget c and the asset’s current price S, but let the
number of rounds tend to1? We now give answers to these questions, and devote the remainder of
the paper to developing the results in detail.

We consider payoff functions g : R0 ! R0 satisfying three constraints:
2The constraint in [1] was E[r2

i | r1, . . . , ri�1]  exp(c/n)� 1, but this is roughly equivalent.
3We note that Abernethy et al. [1] also assumed that the multiplicative price jumps |ri| are bounded by

ˆ⇣n = ⌦(

p
(log n)/n); this is a stronger assumption than what we impose on (⇣n) in Theorem 1.

4



1. g is convex.
2. g is L-Lipschitz, i.e. |g(x)� g(y)|  L|x� y|.
3. g is eventually linear, i.e. there exists K > 0 such that g(x) is a linear function for all

x � K; in this case we also say g is K-linear.

We believe the first two conditions are strictly necessary to achieve the desired results. The K-
linearity may not be necessary but makes our analysis possible. We note that the constraints above
encompass the standard European call and put options.

Henceforth we shall let G be a zero-drift GBM with unit volatility. In particular, we have that
log G(t) ⇠ N (� 1

2 t, t). For S, c � 0, define the function

U(S, c) = E
G

[g(S · G(c))],

and observe that U(S, 0) = g(S). Our goal will be to show that U is asymptotically the minimax
price of the option. Most importantly, this function U(S, c) is identical to V(S, 1

�

2 (T � c)), the
Black-Scholes value of the option in (4) when the GBM volatility parameter is � in the Black-
Scholes analysis. In particular, analogous to to (3), U(S, c) satisfies a differential equation:

1

2

S2 @2U

@S2
� @U

@c
= 0. (6)

The following is our main result of this paper.
Theorem 1. Let S > 0 be the initial asset price and let c > 0 be the variance budget. Assume we
have a sequence {⇣

n

} with lim

n!1 ⇣
n

= 0 and lim inf

n!1 n⇣2
n

> c. Then

lim

n!1
V

(n)
⇣

n

(S; c) = U(S, c).

This statement tells us that the minimax price of an option, when Nature has a total fluctuation
budget of c, approaches the Black-Scholes price of the option when the time to expiration is c.
This is particularly surprising since our minimax pricing framework made no assumptions as to
the stochastic process generating the price path. This is the same conclusion as in [1], but we
obtained our result with a significantly weaker assumption. Unlike [1], however, we do not show
that the adversary’s minimax optimal stochastic price path necessarily converges to a GBM. The
convergence of Nature’s price path to GBM in [1] was made possible by the uniform per-round
variance constraint.

The previous theorem is the result of two main technical contributions. First, we prove a lower
bound on the limiting value of V

(n)
⇣

n

(S; c) by exhibiting a simple randomized strategy for Nature
in the form of a stochastic price path, and appealing to the Lindeberg-Feller central limit theorem.
Second, we prove an O(c⇣1/4

) upper bound on the deviation between V
(n)
⇣

(S; c) and U(S, c). The
upper bound is obtained by providing an explicit strategy for the Investor:

�(S, c) = S
@U(S, c)

@S

and carefully bounding the difference between the output using this strategy and the game value. In
the course of doing so, because we are invoking Taylor’s remainder theorem, we need to bound the
first few derivatives of U(S, c). Bounding these derivatives turns out to be the crux of the analysis;
in particular, it uses the full force of the assumptions on g, including that g is eventually linear, to
avoid the pathological cases when the derivative of g converges to its limiting value very slowly.

5 Lower Bound

In this section we prove that U(S, c) is a lower bound to the game value V
(n)
⇣

n

(S; c). We note that the
result in this section does not use the assumptions in Theorem 1 that ⇣

n

! 0, nor that g is convex
and eventually linear. In particular, the following result also applies when the sequence (⇣

n

) is a
constant ⇣ > 0.
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Theorem 2. Let g : R0 ! R0 be an L-Lipschitz function, and let {⇣
n

} be a sequence of positive
numbers with lim inf

n!1 n⇣2
n

> c. Then for every S, c > 0,

lim inf

n!1
V

(n)
⇣

n

(S; c) � U(S, c).

The proof of Theorem 2 is based on correctly “guessing” a randomized strategy for Nature. For each
n 2 N, define the random variables R1,n

, . . . , R
n,n

⇠ Uniform{±
p

c/n} i.i.d. Note that (R
i,n

)

n

i=1

satisfies TotVarConstraint by construction. Moreover, the assumption lim inf

n!1 n⇣2
n

> c im-
plies ⇣

n

>
p

c/n for all sufficiently large n, so eventually (R
i,n

) also satisfies JumpConstraint.
We have the following convergence result for (R

i,n

), which we prove in Appendix A.
Lemma 3. Under the same setting as in Theorem 2, we have the convergence in distribution

n

Y

i=1

(1 + R
i,n

)

d�! G(c) as n!1.

Moreover, we also have the convergence in expectation

lim

n!1
E
"

g

 

S ·
n

Y

i=1

(1 + R
i,n

)

!#

= U(S, c). (7)

With the help of Lemma 3, we are now ready to prove Theorem 2.

Proof of Theorem 2. Let n be sufficiently large such that n⇣2
n

> c. Let R
i,n

⇠ Uniform{±
p

c/n}
i.i.d., for 1  i  n. As noted above, (R

i,n

) satisfies both TotVarConstraint and JumpConstraint.
Then we have

V
(n)
⇣

n

(S; c) = inf

�1
sup

r1

· · · inf

�
n

sup

r

n

g
⇣

S ·
n

Y

i=1

(1 + r
i

)

⌘

�
n

X

i=1

�

i

r
i

� inf

�1
· · · inf

�
n

E
h

g
⇣

S ·
n

Y

i=1

(1 + R
i,n

)

⌘

�
n

X

i=1

�

i

R
i,n

i

= E
h

g
⇣

S ·
n

Y

i=1

(1 + R
i,n

)

⌘i

.

The first line follows from unrolling the recursion in the definition (5); the second line from replacing
the supremum over (r

i

) with expectation over (R
i,n

); and the third line from E[R
i,n

] = 0. Taking
limit on both sides and using (7) from Lemma 3 give us the desired conclusion.

6 Upper Bound

In this section we prove that U(S, c) is an upper bound to the limit of V
(n)
⇣

(S; c).
Theorem 4. Let g : R0 ! R0 be a convex, L-Lipschitz, K-linear function. Let 0 < ⇣  1/16. Then
for any S, c > 0 and n 2 N, we have

V
(n)
⇣

(S; c)  U(S, c) +

✓

18c +

8p
2⇡

◆

LK ⇣1/4.

We remark that the right-hand side of the above bound does not depend on the number of trading
periods n. The key parameter is ⇣, which determines the size of the largest price jump of the stock.
However, we expect that as the trading frequency increases, the size of the largest price jump will
shrink. Plugging a sequence {⇣

n

} in place of ⇣ in Theorem 4 gives us the following corollary.
Corollary 1. Let g : R0 ! R0 be a convex, L-Lipschitz, K-linear function. Let {⇣

n

} be a sequence
of positive numbers with ⇣

n

! 0. Then for S, c > 0,

lim sup

n!1
V

(n)
⇣

n

(S; c)  U(S, c).

Note that the above upper bound relies on the convexity of g, for if g were concave, then we would
have the reverse conclusion:

V
(n)
⇣

(S; c) � g(S) = g(S · E[G(c)]) � E[g(S · G(c))] = U(S, c).

Here the first inequality follows from setting all r = 0 in (5), and the second is by Jensen’s inequality.

6



6.1 Intuition

For brevity, we write the partial derivatives U
c

(S, c) = @U(S, c)/@c, U
S

(S, c) = @U(S, c)/@S, and
U

S

2
(S, c) = @2U(S, c)/@S2. The proof of Theorem 4 proceeds by providing a “guess” for the In-

vestor’s action, which is a modification of the original Black-Scholes hedging strategy. Specifically,
when the current price is S and the remaining budget is c, then the Investor invests

�(S, c) := SU
S

(S, c).

We now illustrate how this strategy gives rise to a bound on V
(n)
⇣

(S; c) as stated in Theorem 4. First
suppose for some m � 1 we know that V

(n)
⇣

(S; c, m�1) is a rough approximation to U(S, c). Note
that a Taylor approximation of the function r

m

7! U(S + Sr
m

, c� r2
m

) around U(S, c) gives us

U(S + Sr
m

, c� r2
m

) = U(S, c) + r
m

SU
S

(S, c)� r2
m

U
c

(S, c) +

1

2

r2
m

S2U
S

2
(S, c) + O(r3

m

)

= U(S, c) + r
m

SU
S

(S, c) + O(r3
m

),

where the last line follows from the Black-Scholes equation (6). Now by setting � = SU
S

(S, c) in
the definition (5), and using the assumption and the Taylor approximation above, we obtain

V
(n)
⇣

(S; c, m) = inf

�2R
sup

|r
m

|min{⇣,

p
c}
��r

m

+ V
(n)
⇣

(S + Sr
m

; c� r2
m

, m� 1)

 sup

r

m

�r
m

SU
S

(S, c) + V
(n)
⇣

(S + Sr
m

; c� r2
m

, m� 1)

= sup

r

m

�r
m

SU
S

(S, c) + U(S + Sr
m

, c� r2
m

) + (approx terms)

= U(S, c) + O(r3
m

) + (approx terms).

In other words, on each round of the game we add an O(r3
m

) term to the approximation error. By the
time we reach V

(n)
⇣

(S; c, n) we will have an error term that is roughly on the order of
P

n

m=1 |r
m

|3.
Since

P

n

m=1 r2
m

 c and |r
m

|  ⇣ by assumption, we get
P

n

m=1 |r
m

|3  ⇣c.

The details are more intricate because the error O(r3
m

) from the Taylor approximation also depends
on S and c. Trading off the dependencies of c and ⇣ leads us to the bound stated in Theorem 4.

6.2 Proof (Sketch) of Theorem 4

In this section we describe an outline of the proof of Theorem 4. Throughout, we assume g is a
convex, L-Lipschitz, K-linear function, and 0 < ⇣  1/16. The proofs of Lemma 5 and Lemma 7
are provided in Appendix B, and Lemma 6 is proved in Appendix C.

For S, c > 0 and |r| 
p

c, we define the (single-round) error term of the Taylor approximation,

✏
r

(S, c) := U(S + Sr, c� r2
)� U(S, c)� rSU

S

(S, c). (8)

We also define a sequence {↵(n)
(S, c,m)}n

m=0 to keep track of the cumulative errors. We define
this sequence by setting ↵(n)

(S, c, 0) = 0, and for 1  m  n,

↵(n)
(S, c,m) := sup

|r|min{⇣,

p
c}

✏
r

(S, c) + ↵(n)
(S + Sr, c� r2, m� 1). (9)

For simplicity, we write ↵(n)
(S, c) ⌘ ↵(n)

(S, c, n). Then we have the following result, which
formalizes the notion from the preceding section that V

(n)
⇣

(S; c, m) is an approximation to U(S, c).

Lemma 5. For S, c > 0, n 2 N, and 0  m  n, we have

V
(n)
⇣

(S; c, m)  U(S, c) + ↵(n)
(S, c,m). (10)

It now remains to bound ↵(n)
(S, c) from above. A key step in doing so is to show the following

bounds on ✏
r

. This is where the assumptions that g be L-Lipschitz and K-linear are important.
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Lemma 6. For S, c > 0, and |r|  min{1/16,
p

c/8}, we have

✏
r

(S, c)  16LK
⇣

max{c�3/2, c�1/2} |r|3 + max{c�2, c�1/2} r4
⌘

. (11)

Moreover, for S > 0, 0 < c  1/4, and |r| 
p

c, we also have

✏
r

(S, c)  4LKp
2⇡

· r2

p
c
. (12)

Using Lemma 6, we have the following bound on ↵(n)
(S, c).

Lemma 7. For S, c > 0, n 2 N, and 0 < ⇣  1/16, we have

↵(n)
(S, c) 

✓

18c +

8p
2⇡

◆

LK ⇣1/4.

Proof (sketch). By unrolling the inductive definition (9), we can write ↵(n)
(S, c) as the supremum

of f(r1, . . . , rn

), where

f(r1, . . . , rn

) =

n

X

m=1

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

.

Let (r1, . . . , rn

) be such that |r
m

|  ⇣ and
P

n

m=1 r2
m

 c. We will show that f(r1, . . . , rn

) 
(18c + 8/

p
2⇡) LK ⇣1/4. Let 0  n⇤  n be the largest index such that

P

n⇤
m=1 r2

m

 c�
p

⇣. We
split the analysis into two parts.

1. For 1  m  min{n, n⇤ + 1}: By (11) from Lemma 6 and a little calculation, we have

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 18LK ⇣1/4 r2
m

.

Summing over 1  m  min{n, n⇤ + 1} then gives us

min{n, n⇤+1}
X

m=1

✏
r

m

⇣

S

m�1
Y

i=1

(1+r
i

), c�
m�1
X

i=1

r2
i

⌘

 18LK ⇣1/4
min{n, n⇤+1}

X

m=1

r2
m

 18LK ⇣1/4 c.

2. For n⇤ + 2  m  n (if n⇤  n� 2): By (12) from Lemma 6, we have

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 4LKp
2⇡

· r2
m

p

P

n

i=m

r2
i

.

Therefore,
n

X

m=n⇤+2

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 4LKp
2⇡

n

X

m=n⇤+2

r2
m

p

P

n

i=m

r2
i

 8LKp
2⇡

⇣1/4,

where the last inequality follows from Lemma 8 in Appendix B.

Combining the two cases above gives us the desired conclusion.

Proof of Theorem 4. Theorem 4 follows immediately from Lemma 5 and Lemma 7.
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