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ABSTRACT 

We have created new networks to unmix signals which have been 
mixed either with time delays or via filtering. We first show that 
a subset of the Herault-Jutten learning rules fulfills a principle of 
minimum output power. We then apply this principle to extensions 
of the Herault-Jutten network which have delays in the feedback 
path. Our networks perform well on real speech and music signals 
that have been mixed using time delays or filtering. 

1 INTRODUCTION 
Recently, there has been much interest in neural architectures to solve the "blind 
separation of signals" problem (Herault & Jutten, 1986) (Vittoz & Arreguit, 1989). 
The separation is called "blind," because nothing is assumed known about the 
frequency or phase of the signals. 

A concrete example of blind separation of sources is when the pure signals are sounds 
generated in a room and the mixed signals are the output of some microphones. 
The mixture process would model the delay of the sound to each microphone, and 
the mixing of the sounds at each microphone. The inputs to the neural network 
would be the microphone outputs, and the neural network would try to produce 
the pure signals. 

The mixing process can take on different mathematical forms in different situations. 
To express these forms, we denote the pure signal i as Pi, the mixed signal i as Ii 
(which is the ith input to the network), and the output signal i as Oi. 

The simplest form to unmix is linear superposition: 

730 

lj(t) = Pi(t) + L Mjj(t)Pj(t). 
j# 

(1) 
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A more realistic, but more difficult form to unmix is superposition with single delays: 

l i (f) = Pi(t) + L Mij(t)Pj(t - Djj(t)). 
j i-i 

(2) 

Finally, a rather general mixing process would be superposition with causal filtering: 

li(t) = Pi(t) + L L Mijk(t)Pj (t - 15 k). 
ji-i k 

(3) 

Blind separation is interesting for many different reasons . The network must adapt 
on-line and without a supervisor , which is a challenging type of learning. One 
could imagine using a blind separation network to clean up an input to a speech 
understanding system. (Juttell & Herault, 1991) uses a blind separation network 
to deskew images . Finally, researchers have implemented blind separation networks 
using analog VLSI to yield systems which are capable of performing the separation 
of sources in real time (Vittoz & Arreguit, 1990) (Cohen, et. al., 1992). 

1.1 Previous Work 

Interest in adaptive systems which perform noise cancellation dates back to the 
1960s and 1970s (Widrow, et. al., 1975). The first neural network to un mix on-line 
a linear superposition of sources was (Herault & Jutten, 1986). Further work on 
off-line blind separation was performed by (Cardoso, 1989). Recently, a network to 
unmix filtered signals was proposed in (Jutten, et. al., 1991), independently of this 
paper . 

2 PRINCIPLE OF MINIMUM OUTPUT POWER 
In this section, we apply the mathematics of noise-cancelling networks (Widrow , 
et . al. , 1975) to the network in (Herault & Jutten, 1986) in order to generalize to 
new networks that can handle delays in the mixing process . 

2.1 Noise-cancellation Networks 

A noise-cancellation network tries to purify a signal which is corrupted by filtered 
noise (Widrow, et. al. , 1975) . The network has access to the isolated noise signal. 
The interference equation is 

1(t) = P(t) + L MjN(t - 8j ) . 

j 

The adaptive filter inverts the interference equation , to yield an output: 

O(t) = 1(t) - L Cj N(t - 8j ). 

j 

(4) 

(5) 

The adaptation of a noise-cancellation network relies on an elegant notion: if a 
signal is impure, it will have a higher power than a pure signal, because the noise 
power adds to the signal power. The true pure signal has the lowest power. This 
minimum output power principle is used to determine adaptation laws for noise­
cancellation networks. Specifically, at any time t , Cj is adjusted by taking a step 
that minimizes 0(t)2 
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Figure 1: The network described in (Herault & Jutten, 1986). The dashed arrows 
represent adaptation. 

2.2 The Herault-Jutten Network 

The Herault-Jutten network (see Figure 1) uses a purely additive model of interfer­
ence. The interference is modeled by 

Ii = Pi + LMijPj. 
j ,#-i 

(6) 

Notice the Herault-Jutten network solves a more general problem than previous 
noise-cancellation networks: the Herault-Jutten network has no access to any pure 
signal. 

In (Herault & Jutten, 1986), the authors also propose inverting the interference 
model: 

OJ = Ii - L: GijOj . 

j ,#-i 

(7) 

The Herault-Jutten network can be understood intuitively by assuming that the 
network has already adapted so that the outputs are the pure signals (OJ = Pj ). 

Each connection Gij subtracts just the right amount of the pure signal Pj from the 
input Ii to yield the pure signal Pi. So, the Herault-J utten network will produce 
pure signals if the Gij = M ij . 

In (Herault & Jutten, 1986), the authors propose a very general adaptation rule for 
the Gij: 

(8) 

for some non-linear functions f and g. (Sorouchyari, 1991) proves that the network 
converges for f(x) = x3 . 

In this paper, we propose that the same elegant minimization principle that governs 
the noise-cancellation networks can be used to justify a subset of Herault-Jutten 
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learning algorithms. Let g(x) = x and f(x) be a derivative of some convex function 
h(x), with a minimum at x = O. In this case, each output of the Hcrault-Jutten 
network independently minimizes a function h(x) . 

A Herault-Jutten network can be made by setting h(x) = x2 . Unfortunately, this 
network will not converge, because the update rules for two connections G ij and 
Gji are identical: 

(9) 

Under this condition, the two parameters Gij and Gji will track one another and not 
converge to the correct answer. Therefore, a non-linear adaptation rule is needed 
to break the symmetry between the outputs. 

The next two sections of the paper describe how the minimum output power prin­
ciple can be applied to generalizations of the Herault-J utten architecture. 

3 NETWORK FOR UNMIXING DELAYED SIGNALS 

Figure 2: Our network for unmixing signals mixed with single delays. The 
adjustable delay in the feedback path avoids the degeneracy in the learning rule. 
The dashed arrows represent adaptation: the source of the arrow is the source of 
the error used by gradient descent. 

Our new network is an extension of the Herault-Jutten network (see Figure 2). We 
assume that the interference is delayed by a certain amount: 

Ii(t) = Pi(t) + L: Mij Pj (t - Djj (t»). (10) 
i:j:.j 

Compare this to equation (6): our network can handle delayed interference, while 
the Herault-Jutten network cannot. We introduce an adjustable delay in the feed­
back path in order to cancel the delay of the interference: 

Oi(t) = I(t) - L: GijOj(t - djj(t)). 
i:j:.j 

(11) 
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We apply the minimum output power principle to adapt the mixing coefficients Gij 

and the delays dij : 

~Gij(t) = aOi(t)Oj(t - dij(t)), 

dO · 
~dij(t) = -f3Gij (t)Oj(t) d/ (t - djj(t)) . 

(12) 

By introducing a delay in the feedback, we prevent degeneracy in the learning rule, 
hence we can use a quadratic power to adjust the coefficients . 
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Figure 3: The results of the network applied to a speech/music superposition. 
These curves are short-time averages of the power of signals. The upper curve shows 
the power of the pure speech signal. The lower curve shows the power of the dif­
ference between the speech output of the network, and the pure speech signal. The 
gap between the curves is the amount that the network attenuates the interference 
between the music and speech: the adaptation of the network tries to drive the 
lower curve to zero. As you can see, the network quickly isolates the pure speech 
signal. 

For a test of our network, we took two signals, one speech and one music, and 
mixed them together via software to form two new signals: the first being speech 
plus a delayed, attenuated music; the second being music plus delayed, attenuated 
speech. Figure 3 shows the results of our network applied to these two signals: the 
interference was attenuated by approximately 22 dB. One output of the network 
sounds like speech, with superimposed music which quickly fades away. The other 
output of the network sounds like music, with a superimposed speech signal which 
quickly fades away. 

Our network can also be extended to more than two sources, like the Herault-Jutten 
network. If the network tries to separate S sources, it requires S non-identical 
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inputs . Each output connects to one input, and a delayed version of each of the 
other outputs, for a total of 28(S - 1) adaptive coefficients. 

4 NETWORK FOR UNMIXING FILTERED SIGNALS 

Figure 4: A network to unrnix signals that have been mixed via filtering. The 
filters in the feedback path are adjusted to independently minimize the power h( Oi) 
of each output. 

For the mixing process that involves filtering, 

Ii(t) = Pi(t) + L L MijkPj(t - bk), 
j-:ti k 

we put filters in the feedback path of each output: 

Oi(t) = li(t) - L L CjkOj(t - 15k), 
j -:ti k 

(13) 

(14) 

(Jutten, et. al., 1991) also independently developed this architecture. We can use the 
principle of minimum output power to develop a learning rule for this architecture: 

(15) 

for some convex function h. (Jutten, et. al., 1991) suggests using an adaptation rule 
that is equivalent to choosing h(x) = X4. 

Interestingly, neither the choice of h( x) = x2 nor h( x) = X4 converges to the correct 
solution. For both h(x) = x2 and h(x) = x4, if the coefficients start at the correct 
solution, they stay there. However, if the coefficients start at zero, they converge 
to a solution that is only roughly correct (see Figure 5). These experiments show 
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Figure 5: The coefficients for one filter in the feedback path of the network. The 
weights were initialized t.o zero. Two different speech/music mixtures were applied 
to the network. The solid line indicates the correct solution for the coefficients. 
When minimizing either h(x) = x2 or h(x) = x\ the network converges to an 
incorrect solution. Minimizing h(x) = Ixl seems to work well . 

that the learning algorithm has multiple stable states. Experimentally, the spurious 
stable states seem to perform roughly as well as the true answer. 

To account for these multiple stable states, we came up with a conjecture: that 
the different minimizations performed by each output fought against one another 
and created the multiple stable states. Optimization theory suggests using an exact 
penalty method to avoid fighting between multiple terms in a single optimization 
criteria (Gill, 1981). The exact penalty method minimizes a function h(x) that has 
a non-zero derivative for x close to O. We tried a simple exact penalty method of 
h(x) = Ix\' and it empirically converged to the correct solution (see Figure 5). The 
adaptation rule is then 

(16) 

In this case, the non-linearity of the adaptation rule seems to be important for the 
network to converge to the true answer. For a speech/music mixture, we achieved 
a signal-to-noise ratio of 20 dB using the update rule (16). 

5 FUTURE WORK 
The networks described in the last two sections were found to converge empirically. 
In the future, proving conditions for convergence would be useful. There are some 
known pathological cases which cause these networks not to converge. For example, 
using white noise as the pure signals for the network in section 3 causes it to fail, 
because there is no sensible way for the network to change the delays. 










