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Abstract

We advocate the use of a new distribution family—the transelliptical—for robust
inference of high dimensional graphical models. The transelliptical family is an
extension of the nonparanormal family proposed by Liu et al. (2009). Just as the
nonparanormal extends the normal by transforming the variables using univariate
functions, the transelliptical extends the elliptical family in the same way. We
propose a nonparametric rank-based regularization estimator which achieves the
parametric rates of convergence for both graph recovery and parameter estima-
tion. Such a result suggests that the extra robustness and flexibility obtained by
the semiparametric transelliptical modeling incurs almost no efficiency loss. We
also discuss the relationship between this work with the transelliptical component
analysis proposed by Han and Liu (2012).

1 Introduction

We consider the problem of learning high dimensional graphical models. In a typical setting, a
d-dimensional random vector X = (X1, ..., Xd)T can be represented as an undirected graph de-
noted by G = (V,E), where V contains nodes corresponding to the d variables in X , and the
edge set E describes the conditional independence relationship among X1, ..., Xd. Let X\{i,j} :=
{Xk : k 6= i, j}. We say the joint distribution of X is Markov to G if Xi is independent of Xj given
X\{i,j} for all (i, j) /∈ E. While often G is assumed given, here we want to estimate it from data.

Most graph estimation methods rely on the Gaussian graphical models, in which the random vector
X is assumed to be Gaussian: X ∼ Nd(µ, Σ). Under this assumption, the graph G is encoded
by the precision matrix Θ := Σ−1. More specifically, no edge connects Xj and Xk if and only
if Θjk = 0. This problem of estimating G is called covariance selection [5]. In low dimensions
where d < n, [6, 7] develop a multiple testing procedure for identifying the sparsity pattern of the
precision matrix. In high dimensions where d � n, [21] propose a neighborhood pursuit approach
for estimating Gaussian graphical models by solving a collection of sparse regression problems using
the Lasso [25, 3]. Such an approach can be viewed as a pseudo-likelihood approximation of the full
likelihood. In contrast, [1, 30, 10] propose a penalized likelihood approach to directly estimate
Ω. [15, 14, 24] maximize the non-concave penalized likelihood to obtain an estimator with less
bias than the traditional L1-regularized estimator. Under the irrepresentable conditions [33, 31, 27],
[22, 23] study the theoretical properties of the penalized likelihood methods. More recently, [29, 2]
propose the graphical Dantzig selector and CLIME, which can be solved by linear programming and
possess more favorable theoretical properties than the penalized likelihood approach.
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Besides Gaussian models, [18] propose a semiparametric procedure named nonparanormal SKEP-
TIC which extends the Gaussian family to the more flexible semiparametric Gaussian copula family.
Instead of assuming X follows a Gaussian distribution, they assume there exists a set of monotone
functions f1, . . . , fd, such that the transformed data f(X) := (f1(X1), . . . , fd(Xd))T is Gaussian.
More details can be found in [18]. [32] has developed a scalable software package to implement
these algorithms. In another line of research, [26] extends the Gaussian graphical models to the
elliptical graphical models. However, for elliptical distributions, only the generalized partial cor-
relation graph can be reliably estimated. These graphs only represent the conditional uncorrelated-
ness, but conditional independence, among variables. Therefore, by extending the Gaussian to the
elliptical family, the gain in modeling flexibility is traded off with a loss in the strength of inference.
In a related work, [9] provide a latent variable interpretation of the generalized partial correlation
graph for multivariate t-distributions. An EM-type algorithm is proposed to fit the model for high
dimensional data. However, the theoretical properties of their estimator is unknown.

In this paper, we introduce a new distribution family named transelliptical graphical model. A key
concept is the transelliptical distribution [12]. The transelliptical distribution is a generalization of
the nonparanormal distribution proposed by [18]. By mimicking how the nonparanormal extends the
normal family, the transelliptical extends the elliptical family in the same way. The transelliptical
family contains the nonparanomral family and elliptical family. To infer the graph structure, a rank-
based procedure using the Kendall’s tau statistic is proposed. We show such a procedure is adaptive
over the transelliptical family: the procedure by default delivers a conditional uncorrelated graphs
among certain latent variables; however, if the true distribution is the nonparanormal, the procedure
automatically delivers the conditional independence graph. Computationally, the only extra cost is a
one-pass data sort, which is almost negligible. Theoretically, even though the transelliptical family
is much larger than the nonparanormal family, the same parametric rates of convergence for graph
recovery and parameter estimation can be established. These results suggest that the transelliptical
graphical model can be used routinely as a replacement of the nonparanormal models. Thorough
numerical results are provided to back up our theory.

2 Background on Elliptical Distributions

Let X and Y be two random variables, we denote by X
d= Y if they have the same distribution.

Definition 2.1 (elliptical distribution [8]). Let µ ∈ Rd and Σ ∈ Rd×d with rank(Σ) = q ≤ d. A
d-dimensional random vector X has an elliptical distribution, denoted by X ∼ ECd(µ,Σ, ξ), if it
has a stochastic representation: X

d= µ + ξAU , where U is a random vector uniformly distributed
on the unit sphere in Rq, ξ ≥ 0 is a scalar random variable independent of U , A ∈ Rd×q is a
deterministic matrix such that AAT = Σ.
Remark 2.1. An equivalent definition of an elliptical distribution is that its characteristic function
can be written as exp(itT µ)φ(tT Σt), where φ is a properly-defined characteristic function which
has a one-to-one mapping with ξ in Definition 2.1. In this setting we denote by X ∼ ECd(µ,Σ, φ).

An elliptical distribution does not necessarily have a density. One example is the rank-deficient
Gaussian. More examples can be found in [11]. However, when the random variable ξ is absolutely
continuous with respect to the Lebesgue measure and Σ is non-singular, the density of X exists and
has the form

p(x) = |Σ|−1/2g
(
(x− µ)T Σ−1(x− µ)

)
, (1)

where g(·) is a scale function uniquely determined by the distribution of ξ. In this case, we can also
denote it as X ∼ ECd(µ,Σ, g). Many multivariate distributions belong to the elliptical family. For
example, when g(x) = (2π)−d/2 exp {−x/2}, X is d-dimensional Gaussian. Another important
subclass is the multivariate t-distribution with the degrees of freedom v, in which, we choose

g(x) = cv

Γ
(

v+d
2

)
(vπ)

d
2 Γ(v

2 )

(
1− c2

vx

v

)− v+d
2

, (2)

where cv is a normalizing constant.

The model family in Definition 2.1 is not identifiable. For example, given X ∼ ECd(µ,Σ, ξ) with
rank(Σ) = q, there will be multiple As corresponding to the same Σ. i.e., there exist A1 6= A2 ∈
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Rd×q such that A1A
T
1 = A2A

T
2 = Σ. For some constant c 6= 0, we define ξ∗ = ξ/c and A∗ = c ·A,

then ξAU = ξ∗A∗U . Therefore, the matrix Σ is unique only up to a constant scaling. To make the
model identifiable, we impose the condition that max{diag(Σ)} = 1. More discussions about the
identifiability issue can be found in [12].

3 Transelliptical Graphical Models
In this paper we only consider distributions with continuous marginals. We introduce the transellip-
tical graphical models in analogy to the nonparanormal graphical models [19, 18]. The key concept
is transelliptical distribution which is also introduced in [12]. However, the definition of transellip-
tical distribution in this paper is slightly more restrictive than that in [12] due to the complication of
graphical modeling. More specifically, let

R+
d := {Σ ∈ Rd×d : ΣT = Σ,diag(Σ) = 1,Σ � 0}, (3)

we define the transelliptical distribution as follows:
Definition 3.1 (transelliptical distribution). A continuous random vector X = (X1, . . . , Xd)T is
transelliptical, denoted by X ∼ TEd(Σ, ξ; f1, . . . , fd), if there exists a set of monotone univariate
functions f1, . . . , fd and a nonnegative random variable ξ satisfying P(ξ = 0) = 0, such that

(f1(X1), . . . , fd(Xd))T ∼ ECd(0,Σ, ξ), where Σ ∈ R+
d . (4)

Here, Σ is called latent generalized correlation matrix1.
We then discuss the relationship between the transelliptical family with the nonparanormal family,
which is defined as follows:
Definition 3.2 (nonparanormal distribution). A ramdom vector X = (X1, . . . , Xd)T is nonpara-
normal, denoted by X ∼ NPNd(Σ; f1, . . . , fd), if there exist monotone functions f1, . . . , fd such
that (f1(X1), . . . , fd(Xd))T ∼ Nd(0,Σ), where Σ ∈ R+

d is called latent correlation matrix.

From Definitions 3.1 and 3.2, we see the transelliptical is a strict extension of the nonparanormal.
Both families assume there exits a set of univariate transformations such that the transformed data
follow a base distribution: the nonparanormal exploits a normal base distribution; while the transel-
liptical exploits an elliptical base distribution. In the nonparanormal, Σ is the correlation matrix for
the latent normal, therefore it is called latent correlation matrix; In the transelliptical, Σ is the gener-
alized correlation matrix for the latent elliptical distribution, therefore it is called latent generalized
correlation matrix.

We now define the transelliptical graphical models. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) where Σ ∈ R+
d

is the latent generalized correlation matrix. In this paper, we always assume the second moment
Eξ2 < ∞. We define Θ := Σ−1 to be the latent generalized concentration matrix. Let Θjk be the
element of Θ on the j-th row and k-th column. We define the latent generalized partial correlation
matrix Γ as Γjk := −Θjk/

√
Θjj ·Θkk. Let diag(A) be the matrix A with off-diagonal elements

replaced by zero and A1/2 be the squared root matrix of A. It is easy to see that

Γ = −[diag(Σ−1)]−1/2Σ−1[diag(Σ−1)]−1/2. (5)

Therefore, Γ has the same nonzero pattern as Σ−1. We then define a undirected graph G = (V,E):
the vertex set V contains nodes corresponding to the d variables in X , and the edge set E satisfies

(Xj , Xk) ∈ E if and only if Γjk 6= 0 for j, k = 1, . . . , d. (6)

Given a graph G, we define R+
d (G) to be the set containing all the Σ ∈ R+

d with zero entries at the
positions specified by the graph G. The transelliptical graphical model induced by G is defined as:

Definition 3.3 (transelliptical graphical model). The transelliptical graphical model induced by a
graph G, denoted by P(G), is defined to be the set of distributions:
P(G) :=

{
all the transelliptical distributions TEd(Σ, ξ; f1, . . . , fd) satisfying Σ ∈ R+

d (G)
}

. (7)

In the rest of this section, we prove some properties of the transelliptical family and discuss the inter-
pretation of the meaning of the graph G. This graph is called latent generalized partial correlation
graph. First, we show the transelliptical family is closed under marginalization and conditioning.

1One thing to note is that in [12], the condition that Σ ∈ Rd+ is not required.
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Lemma 3.1. Let X := (X1, . . . , Xd)T ∼ TEd(Σ, ξ; f1, . . . , fd). The marginal and the conditional
distributions of (X1, X2)T given the remaining variables are still transellpitical.

Proof. Since X ∼ TEd(Σ, ξ; f1, . . . , fd), we have (f1(X1), . . . , fd(Xd))T ∼ ECd(0,Σ, ξ). Let
Zj := fj(Xj) for j = 1, . . . , d. From Theorem 2.18 of [8], the marginal distribution of (Z1, Z2)T

and the conditional distribution of (Z1, Z2)T given the remaining Z3, . . . , Zd are both elliptical. By
definition, the marginal distribution of (X1, X2)T is transelliptical. To see the conditional case, since
X has continuous marginals and f1, . . . , fd are monotone, the distribution of (X1, X2)T conditional
on X\{1,2} is the same as conditional on Z\{1,2}. Combined with the fact that Z1 = f1(X1),
Z2 = f2(X2), we know that (X1, X2)T |X\{1,2} follows a transelliptical distribution.

From (5), we see the matrices Γ and Θ have the same nonzero pattern, therefore, they encode
the same graph G. Let X ∼ TEd(Σ, ξ; f1, . . . , fd). The next lemma shows that, if the second
moment of X exists, the absence of an edge in the graph G is equivalent to the pairwise conditional
uncorrelatedness of two corresponding latent variables.

Lemma 3.2. Let X :=(X1, . . . , Xd)T ∼ TEd(Σ, ξ; f1, . . . , fd) with Eξ2 < ∞, and Zj := fj(Xj)
for j = 1, . . . , d. Γjk = 0 if and only if Zj and Zk are conditionally uncorrelated given Z\{j,k}.

Proof. Let Z := (Z1, . . . , Zd)T . Since X ∼ TEd(Σ, ξ; f1, . . . , fd), we have Z ∼ ECd(0,Σ, ξ).
Therefore, the latent generalized correlation matrix Σ is the generalized correlation matrix of the
latent variable Z. It suffices to prove that, for elliptical distributions with Eξ2 < ∞, the generalized
partial correlation matrix Γ as defined in (5) encodes the conditional uncorrelatedness among the
variables. Such a result has been proved in the section 2 of [26].

Let A,B, C ⊂ {1, . . . , d}. We say C separates A and B in the graph G if any path from a node
in A to a node in B goes through at least one node in C. We denote by XA the subvector of X
indexed by A. The next lemma implies the equivalence between the pairwise and global conditional
uncorrelatedness of the latent variables for the transelliptical graphical models. This lemma connects
the graph theory with probability theory.

Lemma 3.3. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) be any element of the transelliptical graphical model
P(G) satisfying Eξ2 < ∞. Let Z := (Z1, . . . , Zd)T with Zj = fj(Xj) and A,B,C ⊂ {1, . . . , d}.
Then C separates A and B in G if and only if ZA and ZB are conditional uncorrelated given ZC .

Proof. By definition, we know Z ∼ ECd(0,Σ, ξ). It then suffices to show the pairwise conditional
uncorrelatedness implies the global conditional uncorrelatedness for the elliptical family. This fol-
lows from the same induction argument as in Theorem 3.7 of [16].

Compared with the nonparanormal graphical model, the transelliptical graphical model gains a lot
on modeling flexibility, but at the price of inferring a weaker notion of graphs: a missing edge in
the graph only represents the conditional uncorrelatedness of the latent variables. The next lemma
shows that we do not lose any thing compared with the nonparanormal graphical model. The proof
of this lemma is simple and is omitted. Some related discussions can be found in [19].

Lemma 3.4. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) be a member of the transelliptical graphical model
P(G). If X is also nonparanormal, the graph G encodes the conditional independence relationship
of X (In other words, the distribution of X is Markov to G).

4 Rank-based Regularization Estimator
In this section, we propose a nonparametric rank-based regularization estimator which achieves the
optimal parametric rates of convergence for both graph recovery and parameter estimation. The
main idea of our procedure is to treat the marginal transformation functions fj and the generating
variable ξ as nuisance parameters, and exploit the nonparametric Kendall’s tau statistic to directly
estimate the latent generalized correlation matrix Σ. The obtained correlation matrix estimate is then
plugged into the CLIME procedure to estimate the sparse latent generalized concentration matrix Θ.
From the previous discussion, we know the graph G is encoded by the nonzero pattern of Θ. We
then get a graph estimator by thresholding the estimated Θ̂.
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4.1 The Kendall’s tau Statistic and its Invariance Property
Let x1, . . . , xn ∈ Rd be n observations of a random vector X ∼ TEd(Σ, ξ; f1, . . . , fd). Our task is
to estimate the latent generalized concentration matrix Θ := Σ−1. The Kendall’s tau is defined as:

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign
(
xi

j − xi′

j

) (
xi

k − xi′

k

)
, (8)

which is a monotone transformation-invariant correlation between the empirical realizations of two
random variables Xj and Xk. Let X̃j and X̃k be two independent copies of Xj and Xk. The
population version of the Kendall’s tau statistic is τjk := Corr

(
sign(Xj − X̃j), sign(Xk − X̃k)

)
.

Let X ∼ TEd(Σ, ξ; f1, . . . , fd), the following theorem from [12] illustrates an important rela-
tionship between the population Kendall’s tau statistic τjk and the latent generalized correlation
coefficient Σjk.

Theorem 4.1 (Invariance Property of Kendall’s tau Statistic[12]). Let X := (X1, . . . , Xd)T ∼
TEd(Σ, ξ; f1, . . . , fd). We denote τjk to be the population Kendall’s tau statistic between Xj and
Xk. Then Σjk = sin

(
π
2 τjk

)
.

4.2 Rank-based Regularization Method

We start with some notations. We denote by I(·) to be the indicator function and Id be the identity
matrix. Given a matrix A, we define ‖A‖max := maxjk |Ajk| and ‖A‖1 :=

∑
jk |Ajk|.

Motivated by Theorem 4.1, we define Ŝ = [Ŝjk] ∈ Rd×d to estimate Σ:

Ŝjk = sin
(π

2
τ̂jk

)
· I(j 6= k) + I(j = k). (9)

We then plug Ŝ into the CLIME estimator [2] to get the final parameter and graph estimates. More
specifically, the latent generalized concentration matrix Θ can be estimated by solving

Θ̂ = arg min
Θ

∑
j,k

|Θjk| s.t. ‖ŜΘ− Id‖max ≤ λ, (10)

where λ > 0 is a tuning parameter. [2] show that this optimization can be decomposed into d
vector minimization problems, each of which can be reformulated as a linear program. Thus it
has the potential to scale to very large problems. Once Θ̂ is obtained, we can apply an additional
thresholding step to estimate the graph G. For this, we define a graph estimator Ĝ = (V, Ê), in
which an edge (j, k) ∈ Ê if Θ̂jk ≥ γ. Here γ is another tuning parameter.

Compared with the original CLIME, the extra cost of our rank-based procedure is the computation of
Ŝ, which requires us to evaluate d(d−1)/2 pairwise Kendal’s tau statistics. A naive implementation
of the Kendall’s tau requires O(n2) computation. However, efficient algorithm based on sorting and
balanced binary trees has been developed to calculate the Kendall’s tau statistic with a computational
complexity O(n log n) [4]. Therefore, the incurred computational burden is negligible.
Remark 4.1. Similar rank-based procedures have been discussed in [19, 18, 28]. Unlike our work,
they focus on the more restrictive nonparanromal family and discuss several rank-based procedures
using the normal-score, Spearman’s rho, and Kendall’s tau. Unlike our results, they advocate the
use of the Spearman’s rho and normal-score correlation coefficients. Their main concern is that,
within the more restrictive nonparanormal family, the Spearman’s rho and normal-score correlations
are slightly easier to compute and have smaller asymptotic variance. In constrast to their results,
the new insight obtained from this current paper is that we advocate the usage of the Kendall’s tau
due to its invariance property within the much larger transelliptical family. In fact, we can show that
the Spearman’s rho is not invariant within the transelliptical family unless the true distribution is
nonparanormal. More details on this issue can be found in [8].

5 Asymptotic Properties
We analyze the theoretical properties of the rank-based regularization estimator proposed in Section
4.2. Our main result shows: under the same conditions on Σ that ensure the parameter estimation
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and graph recovery consistency of the original CLIME estimator for Gaussian graphical models, our
rank-based regularization procedure achieves exactly the same parametric rates of convergence for
both parameter estimation and graph recovery for the much larger transelliptical family. This result
suggests that the transelliptical graphical model can be used as a safe replacement of the Gaussian
graphical models, the nonparanormal graphical models, and the elliptical graphical models.

We introduce some additional notations. Given a symmetric matrix A, for 0 ≤ q < 1, we define
‖A‖Lq

:= maxi

∑
j |Aij |q and the spectral norm ‖A‖L2 to be its largest eigenvalue. We define

Sd(q, s, M) := {Θ : ‖Θ‖L1 ≤ M and ‖Θ‖Lq ≤ s}. (11)

For q = 0, the class Sd(0, s, M) contains all the s-sparse matrices. Our main result is Theorem 5.1

Theorem 5.1. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) with Σ ∈ R+
d and Θ := Σ−1 ∈ Sd(q, S,M) with

0 ≤ q < 1. Let Θ̂ be defined in (10). There exist constants C0 and C1 only depending on q, such
that, whenever λ = C0M

√
(log d)/n, with probability no less than 1− d−2, we have

(Parameter estimation) ‖Θ̂−Θ‖L2 ≤ C1M
2−2q · s ·

(
log d

n

)(1−q)/2

. (12)

Let Ĝ be the graph estimator defined in Section 4.2 with the additional tuning parameter γ = 4Mλ.
If we further assume Θ ∈ Sd(0, s, M) and minj,k:|Θjk|6=0 |Θjk| ≥ 2γ, then

(Graph recovery) P
(
Ĝ 6= G

)
≥ 1− o(1), (13)

where G is the graph determined by the nonzero pattern of Θ.

Proof. The difference between the rank-based CLIME and the original CLIME is that we replace
the Pearson correlation coefficient matrix R̂ by the Kendall’s tau matrix Ŝ. By examing the proofs
of Theorems 1 and 7 in [2], the only property needed of R̂ is an exponential concentration inequality

P
(
|R̂jk − Σjk| > t

)
≤ c1 exp(−c2nt2)

. Therefore, it suffices if we can prove a similar concentration inequality for |Ŝjk − Σjk|. Since

Ŝ = sin
(π

2
τ̂jk

)
and Σjk = sin

(π

2
τjk

)
,

we have |Ŝjk − Σjk| ≤ |τ̂jk − τ |. Therefore, we only need to prove

P (|τ̂jk − τjk| > t) ≤ exp
(
−nt2/(2π)

)
.

This result holds since τ̂jk is a U-statistic: τ̂jk = 2
n(n−1)

∑
1≤i<i′≤n Kτ (xi, xi′), where

Kτ (xi, xi′) = sign
(
xi

j − xi′

j

)(
xi

k − xi′

k

)
is a bounded kernel between -1 and 1. The result fol-

lows from the Hoeffding’s inequality for U-statistic [13].

6 Numerical Experiments
We investigate the empirical performance of the rank-based regularization estimator. We compare
it with the following methods: (1) Pearson: the CLIME using the Pearson sample correlation; (2)
Kendall: the CLIME using the Kendall’s tau; (3) Spearman: the CLIME using the Spearman’s
rho; (4) NPN: the CLIME using the original nonparanormal correlation estimator [19]; (5) NS:
the CLIME using the normal score correlation. The later three methods are discussed under the
nonparanormal graphical model and we refer to [18] for detailed descriptions.
6.1 Simulation Studies
We adopt the same data generating procedure as in [18]. To generate a d-dimensional sparse graph
G = (V,E) where V = {1, . . . , d} correspond to variables X = (X1, . . . , Xd), we associate each
index j ∈ {1, . . . , d} with a bivariate data point (Y (1)

j , Y
(2)
j ) ∈ [0, 1]2 where Y

(k)
1 , . . . , Y

(k)
n ∼

Uniform[0, 1] for k = 1, 2. Each pair of vertices (i, j) is included in the edge set E with probability
P((i, j) ∈ E) = exp(−‖yi−yj‖2

n/0.25)/
√

2π, where yi := (y(1)
i , y

(2)
i ) is the empirical observation

of (Y (1)
i , Y

(2)
i ) and ‖ · ‖n represents the Euclidean distance. We restrict the maximum degree of the
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Figure 1: ROC curves for different methods in generating schemes 1 to 4 and different contamination
level r = 0, 0.02, 0.05 (top, middle, bottom) using the CLIME. Here n = 400 and d = 100.

graph to be 4 and build the inverse correlation matrix Ω according to Ωjk = 1 if j = k, Ωjk = 0.145
if (j, k) ∈ E, and Ωjk = 0 otherwise. The value 0.145 guarantees the positive definiteness of Ω.
Let Σ = Ω−1. To obtain the correlation matrix, we rescale Σ so that all its diagonal elements are 1.

In the simulated study we randomly sample n data points from a certain transelliptical distribution
X ∼ TEd(Σ, ξ; f1, . . . , fd). We set d = 100. To determine the transelliptical distribution, we first
generate Σ as discussed in the previous paragraph. Secondly, three types of ξ are considered:

(1) ξ(1) ∼ χd, i.e., ξ follows a chi-distribution with degree of freedom d;

(2) ξ(2) d= ξ∗1/ξ∗2 , ξ∗1 ∼ χd, ξ∗2 ∼ χ1, ξ∗1 is independent of ξ∗2 ;

(3) ξ(3) ∼ F (d, 1), i.e., ξ follows an F -distribution with degree of freedom d and 1.

Thirdly, two type of transformation functions f = {fj}d
j=1 are considered:

(1) linear transformation: f (1) = {f0, . . . , f0} with f0(x) = x;

(2) nonlinear transformation: f (2) = {f1, . . . , fd} = {h1, h2, h3, h4, h5, h1, h2, h3, h4, h5, . . .},
where h−1

1 (x) := x, h−1
2 (x) := sign(x)|x|1/2√∫

|t|φ(t)dt
, h−1

3 (x) := x3√∫
t6φ(t)dt

, h−1
4 (x) :=

Φ(x)−
∫

Φ(t)φ(t)dt√∫
(Φ(y)−

∫
Φ(t)φ(t)dt)2φ(y)dy

, h−1
5 (x) := exp(x)−

∫
exp(t)φ(t)dt√∫

(exp(y)−
∫

exp(t)φ(t)dt)2φ(y)dy
.

We consider the following four data generating schemes:

• Scheme 1: X ∼ TEd(Σ, ξ(1); f (1)), i.e., X ∼ N(0,Σ).

• Scheme 2: X ∼ TEd(Σ, ξ(2); f (1)), i.e., X follows the multivariate Cauchy.

• Scheme 3: X ∼ TEd(Σ, ξ(3); f (1)), i.e., the distribution is highly related to the multivariate t.

• Scheme 4: X ∼ TEd(Σ, ξ(3); f (2)).

To evaluate the robustness of different methods, let r ∈ [0, 1) represent the proportion of samples
being contaminated. For each dimension, we randomly select bnrc entries and replace them with
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either 5 or -5 with equal probability. The final data matrix we obtained is X ∈ Rn×d. Here we
pick r = 0, 0.02 or 0.05. Under the Scheme 1 to Scheme 4 with different levels of contamination
(r = 0, 0.02 or 0.05), we repeatedly generate the data matrix X for 100 times and compute the
averaged False Positive Rates and False Negative Rates using a path of tuning parameters λ from
0.01 to 0.5 and γ = 10−5. The feature selection performances of different methods are evaluated
by plotting (FPR(λ), 1− FNR(λ)). The corresponding ROC curves are presented in Figure 1. We
see: (1) when the data are perfectly Gaussian without contamination, all methods perform well; (2)
when data are non-Gaussian, with outliers existing or latent elliptical distribution different from the
Gaussian, Kendall is better than the other methods in terms of achieving a lower FPR + FNR.

6.2 Equities Data
We compare different methods on the stock price data from Yahoo! Finance (finance.yahoo.
com). We collect the daily closing prices for 452 stocks that are consistently in the S&P 500 index
between January 1, 2003 through January 1, 2008. This gives us altogether 1,257 data points, each
data point corresponding to the vector of closing prices on a trading day. With St,j denoting the
closing price of stock j on day t, we consider the variables Xtj = log (St,j/St−1,j) and build
graphs over the indices j. Though a time series, we treat the instances Xt as independent replicates.

Pearson Kendall Spearman NPN NS

Figure 2: The graph estimated from the S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008 using Pearson,
Kendall,Spearman, NPN, NS (left to right). The nodes are colored according to their GICS sector categories.

The 452 stocks are categorized into 10 Global Industry Classification Standard (GICS) sec-
tors, including Consumer Discretionary (70 stocks), Consumer Staples (35 stocks),
Energy (37 stocks), Financials (74 stocks), Health Care (46 stocks), Industrials
(59 stocks), Information Technology (64 stocks) Telecommunications Services
(6 stocks), , Materials (29 stocks), and Utilities (32 stocks).

Figure 2 illustrates the estimated graphs using the same layout, the nodes are colored according to
the GICS sector of the corresponding stock. The tuning parameter is automatically selected using
a stability based approach named StARS [20]. We see that different methods get slightly different
graphs. The layout is drawn by a force-based algorithm using the estimated graph from the Kendall.
We see the stocks from the same GICS sector tends to be grouped with each other, suggesting that
our method delivers an informative graph estimate.

7 Discussion and Comparison with Related Work
The transelliptical distribution is also proposed by [12] for semiparametric scale-invariant principle
component analysis. Though both papers are based on the transelliptical family, the core idea and
analysis are fundamentally different. For scale-invariant principle component analysis, we impose
structural assumption of the latent generalized correlation matrix; For graph estimation, we impose
structural assumption on the latent generalized concentration matrix. Since the latent generalized
correlation matrix encodes marginal uncorrelatedness while the latent generalized concentration ma-
trix encodes conditional uncorrelatedness of the variables, the analysis of the population models are
orthogonal and complementary to each other. In particular, for graphical models, we need to charac-
terize the properties of marginal and conditional distributions of a transelliptical distribution. These
properties are not needed for principle component analysis. Moreover, the model interpretation
of the inferred transelliptical graph is very nontrivial. In a longer version technical report [17],
we provide a three-layer hierarchal interpretation of the estimated transelliptical graphical model
and sharply characterize the relationships between nonparnaormal, elliptical, meta-elliptical, and
transelliptical families. This research was supported by NSF award IIS-1116730.
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