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Abstract
Minwise hashing is a standard procedure in the context of search, for efficiently
estimating set similarities in massive binary data such as text. Recently, b-bit
minwise hashing has been applied to large-scale learning and sublinear time near-
neighbor search. The major drawback of minwise hashing is the expensive pre-
processing, as the method requires applying (e.g.,) k = 200 to 500 permutations
on the data. This paper presents a simple solution called one permutation hashing.
Conceptually, given a binary data matrix, we permute the columns once and divide
the permuted columns evenly into k bins; and we store, for each data vector, the
smallest nonzero location in each bin. The probability analysis illustrates that this
one permutation scheme should perform similarly to the original (k-permutation)
minwise hashing. Our experiments with training SVM and logistic regression con-
firm that one permutation hashing can achieve similar (or even better) accuracies
compared to the k-permutation scheme. See more details in arXiv:1208.1259.

1 Introduction
Minwise hashing [4, 3] is a standard technique in the context of search, for efficiently computing
set similarities. Recently, b-bit minwise hashing [18, 19], which stores only the lowest b bits of
each hashed value, has been applied to sublinear time near neighbor search [22] and learning [16],
on large-scale high-dimensional binary data (e.g., text). A drawback of minwise hashing is that it
requires a costly preprocessing step, for conducting (e.g.,) k = 200 ∼ 500 permutations on the data.

1.1 Massive High-Dimensional Binary Data

In the context of search, text data are often processed to be binary in extremely high dimensions. A
standard procedure is to represent documents (e.g., Web pages) using w-shingles (i.e., w contiguous
words), where w ≥ 5 in several studies [4, 8]. This means the size of the dictionary needs to be
substantially increased, from (e.g.,) 105 common English words to 105w “super-words”. In current
practice, it appears sufficient to set the total dimensionality to be D = 264, for convenience. Text
data generated by w-shingles are often treated as binary. The concept of shingling can be naturally
extended to Computer Vision, either at pixel level (for aligned images) or at Visual feature level [23].

In machine learning practice, the use of extremely high-dimensional data has become common. For
example, [24] discusses training datasets with (on average) n = 1011 items and D = 109 distinct
features. [25] experimented with a dataset of potentially D = 16 trillion (1.6×1013) unique features.

1.2 Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing was mainly designed for binary data. A binary (0/1) data vector can be viewed as
a set (locations of the nonzeros). Consider sets Si ⊆ Ω = {0, 1, 2, ..., D − 1}, where D, the size of
the space, is often set as D = 264 in industrial applications. The similarity between two sets, S1 and
S2, is commonly measured by the resemblance, which is a version of the normalized inner product:

R =
|S1 ∩ S2|
|S1 ∪ S2| =

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2| (1)

For large-scale applications, the cost of computing resemblances exactly can be prohibitive in time,
space, and energy-consumption. The minwise hashing method was proposed for efficient computing
resemblances. The method requires applying k independent random permutations on the data.

Denote π a random permutation: π : Ω → Ω. The hashed values are the two minimums of π(S1)
and π(S2). The probability at which the two hashed values are equal is

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2| = R (2)

1



One can then estimate R from k independent permutations, π1, ..., πk:

R̂M =
1
k

k∑

j=1

1{min(πj(S1)) = min(πj(S2))}, Var
(
R̂M

)
=

1
k

R(1−R) (3)

Because the indicator function 1{min(πj(S1)) = min(πj(S2))} can be written as an inner product
between two binary vectors (each having only one 1) in D dimensions [16]:

1{min(πj(S1)) = min(πj(S2))} =
D−1∑

i=0

1{min(πj(S1)) = i} × 1{min(πj(S2)) = i} (4)

we know that minwise hashing can be potentially used for training linear SVM and logistic regres-
sion on high-dimensional binary data by converting the permuted data into a new data matrix in
D × k dimensions. This of course would not be realistic if D = 264.

The method of b-bit minwise hashing [18, 19] provides a simple solution by storing only the lowest
b bits of each hashed data, reducing the dimensionality of the (expanded) hashed data matrix to just
2b × k. [16] applied this idea to large-scale learning on the webspam dataset and demonstrated that
using b = 8 and k = 200 to 500 could achieve very similar accuracies as using the original data.

1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing of minwise hashing can be very costly. In our experiments, loading the
webspam dataset (350,000 samples, about 16 million features, and about 24GB in Libsvm/svmlight
(text) format) used in [16] took about 1000 seconds when the data were stored in text format, and
took about 150 seconds after we converted the data into binary. In contrast, the preprocessing cost for
k = 500 was about 6000 seconds. Note that, compared to industrial applications [24], the webspam
dataset is very small. For larger datasets, the preprocessing step will be much more expensive.

In the testing phrase (in search or learning), if a new data point (e.g., a new document or a new
image) has not been processed, then the total cost will be expensive if it includes the preprocessing.
This may raise significant issues in user-facing applications where the testing efficiency is crucial.

Intuitively, the standard practice of minwise hashing ought to be very “wasteful” in that all the
nonzero elements in one set are scanned (permuted) but only the smallest one will be used.

1.4 Our Proposal: One Permutation Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1 2 3 4

π(S
1
):

π(S
2
):

π(S
3
):

Figure 1: Consider S1, S2, S3 ⊆ Ω = {0, 1, ..., 15} (i.e., D = 16). We apply one permutation π on the
sets and present π(S1), π(S2), and π(S3) as binary (0/1) vectors, where π(S1) = {2, 4, 7, 13}, π(S2) =
{0, 6, 13}, and π(S3) = {0, 1, 10, 12}. We divide the space Ω evenly into k = 4 bins, select the smallest
nonzero in each bin, and re-index the selected elements as: [2, 0, ∗, 1], [0, 2, ∗, 1], and [0, ∗, 2, 0]. For
now, we use ‘*’ for empty bins, which occur rarely unless the number of nonzeros is small compared to k.

As illustrated in Figure 1, the idea of one permutation hashing is simple. We view sets as 0/1 vectors
in D dimensions so that we can treat a collection of sets as a binary data matrix in D dimensions.
After we permute the columns (features) of the data matrix, we divide the columns evenly into k
parts (bins) and we simply take, for each data vector, the smallest nonzero element in each bin.

In the example in Figure 1 (which concerns 3 sets), the sample selected from π(S1) is [2, 4, ∗, 13],
where we use ’*’ to denote an empty bin, for the time being. Since only want to compare elements
with the same bin number (so that we can obtain an inner product), we can actually re-index the
elements of each bin to use the smallest possible representations. For example, for π(S1), after
re-indexing, the sample [2, 4, ∗, 13] becomes [2− 4× 0, 4− 4× 1, ∗, 13− 4× 3] = [2, 0, ∗, 1].

We will show that empty bins occur rarely unless the total number of nonzeros for some set is small
compared to k, and we will present strategies on how to deal with empty bins should they occur.
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1.5 Advantages of One Permutation Hashing

Reducing k (e.g., 500) permutations to just one permutation (or a few) is much more computationally
efficient. From the perspective of energy consumption, this scheme is desirable, especially consid-
ering that minwise hashing is deployed in the search industry. Parallel solutions (e.g., GPU [17]),
which require additional hardware and software implementation, will not be energy-efficient.

In the testing phase, if a new data point (e.g., a new document or a new image) has to be first pro-
cessed with k permutations, then the testing performance may not meet the demand in, for example,
user-facing applications such as search or interactive visual analytics.

One permutation hashing should be easier to implement, from the perspective of random number
generation. For example, if a dataset has one billion features (D = 109), we can simply generate a
“permutation vector” of length D = 109, the memory cost of which (i.e., 4GB) is not significant.
On the other hand, it would not be realistic to store a “permutation matrix” of size D×k if D = 109

and k = 500; instead, one usually has to resort to approximations such as universal hashing [5].
Universal hashing often works well in practice although theoretically there are always worst cases.

One permutation hashing is a better matrix sparsification scheme. In terms of the original binary data
matrix, the one permutation scheme simply makes many nonzero entries be zero, without further
“damaging” the matrix. Using the k-permutation scheme, we store, for each permutation and each
row, only the first nonzero and make all the other nonzero entries be zero; and then we have to
concatenate k such data matrices. This significantly changes the structure of the original data matrix.

1.6 Related Work

One of the authors worked on another “one permutation” scheme named Conditional Random Sam-
pling (CRS) [13, 14] since 2005. Basically, CRS continuously takes the bottom-k nonzeros after
applying one permutation on the data, then it uses a simple “trick” to construct a random sample for
each pair with the effective sample size determined at the estimation stage. By taking the nonzeros
continuously, however, the samples are no longer “aligned” and hence we can not write the esti-
mator as an inner product in a unified fashion. [16] commented that using CRS for linear learning
does not produce as good results compared to using b-bit minwise hashing. Interestingly, in the
original “minwise hashing” paper [4] (we use quotes because the scheme was not called “minwise
hashing” at that time), only one permutation was used and a sample was the first k nonzeros after
the permutation. Then they quickly moved to the k-permutation minwise hashing scheme [3].

We are also inspired by the work on very sparse random projections [15] and very sparse stable
random projections [12]. The regular random projection method also has the expensive prepro-
cessing cost as it needs a large number of projections. [15, 12] showed that one can substan-
tially reduce the preprocessing cost by using an extremely sparse projection matrix. The pre-
processing cost of very sparse random projections can be as small as merely doing one projec-
tion. See www.stanford.edu/group/mmds/slides2012/s-pli.pdf for the experi-
mental results on clustering/classification/regression using very sparse random projections.

This paper focuses on the “fixed-length” scheme as shown in Figure 1. The technical report
(arXiv:1208.1259) also describes a “variable-length” scheme. Two schemes are more or less equiv-
alent, although the fixed-length scheme is more convenient to implement (and it is slightly more
accurate). The variable-length hashing scheme is to some extent related to the Count-Min (CM)
sketch [6] and the Vowpal Wabbit (VW) [21, 25] hashing algorithms.

2 Applications of Minwise Hashing on Efficient Search and Learning
In this section, we will briefly review two important applications of the k-permutation b-bit minwise
hashing: (i) sublinear time near neighbor search [22], and (ii) large-scale linear learning [16].

2.1 Sublinear Time Near Neighbor Search
The task of near neighbor search is to identify a set of data points which are “most similar” to
a query data point. Developing efficient algorithms for near neighbor search has been an active
research topic since the early days of modern computing (e.g, [9]). In current practice, methods
for approximate near neighbor search often fall into the general framework of Locality Sensitive
Hashing (LSH) [10, 1]. The performance of LSH largely depends on its underlying implementation.
The idea in [22] is to directly use the bits from b-bit minwise hashing to construct hash tables.
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Specifically, we hash the data points using k random permutations and store each hash value using
b bits. For each data point, we concatenate the resultant B = bk bits as a signature (e.g., bk = 16).
This way, we create a table of 2B buckets and each bucket stores the pointers of the data points
whose signatures match the bucket number. In the testing phrase, we apply the same k permutations
to a query data point to generate a bk-bit signature and only search data points in the corresponding
bucket. Since using only one table will likely miss many true near neighbors, as a remedy, we
independently generate L tables. The query result is the union of data points retrieved in L tables.

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

(empty)

6, 110, 143
 3, 38, 217

 5, 14, 206
31, 74, 153
 21, 142, 329

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

6 ,15, 26, 79
33, 489

7, 49, 208

3, 14, 32, 97
11, 25, 99
8, 159, 331

Figure 2: An example of hash tables, with b = 2, k = 2, and L = 2.

Figure 2 provides an example with b = 2 bits, k = 2 permutations, and L = 2 tables. The size of
each hash table is 24. Given n data points, we apply k = 2 permutations and store b = 2 bits of
each hashed value to generate n (4-bit) signatures L times. Consider data point 6. For Table 1 (left
panel of Figure 2), the lowest b-bits of its two hashed values are 00 and 00 and thus its signature
is 0000 in binary; hence we place a pointer to data point 6 in bucket number 0. For Table 2 (right
panel of Figure 2), we apply another k = 2 permutations. This time, the signature of data point 6
becomes 1111 in binary and hence we place it in the last bucket. Suppose in the testing phrase, the
two (4-bit) signatures of a new data point are 0000 and 1111, respectively. We then only search for
the near neighbors in the set {6, 15, 26, 79, 110, 143}, instead of the original set of n data points.

2.2 Large-Scale Linear Learning

The recent development of highly efficient linear learning algorithms is a major breakthrough. Pop-
ular packages include SVMperf [11], Pegasos [20], Bottou’s SGD SVM [2], and LIBLINEAR [7].

Given a dataset {(xi, yi)}n
i=1, xi ∈ RD, yi ∈ {−1, 1}, the L2-regularized logistic regression solves

the following optimization problem (where C > 0 is the regularization parameter):

min
w

1
2
wTw + C

n∑

i=1

log
(
1 + e−yiw

Txi

)
, (5)

The L2-regularized linear SVM solves a similar problem:

min
w

1
2
wTw + C

n∑

i=1

max
{
1− yiwTxi, 0

}
, (6)

In [16], they apply k random permutations on each (binary) feature vector xi and store the lowest
b bits of each hashed value, to obtain a new dataset which can be stored using merely nbk bits. At
run-time, each new data point has to be expanded into a 2b × k-length vector with exactly k 1’s.

To illustrate this simple procedure, [16] provided a toy example with k = 3 permutations. Sup-
pose for one data vector, the hashed values are {12013, 25964, 20191}, whose binary digits
are respectively {010111011101101, 110010101101100, 100111011011111}. Using b = 2 bits,
the binary digits are stored as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At
run-time, the (b-bit) hashed data are expanded into a new feature vector of length 2bk = 12:
{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}. The same procedure is then applied to all n feature vectors.

Clearly, in both applications (near neighbor search and linear learning), the hashed data have to be
“aligned” in that only the hashed data generated from the same permutation are interacted. Note
that, with our one permutation scheme as in Figure 1, the hashed data are indeed aligned.

3 Theoretical Analysis of the One Permutation Scheme

This section presents the probability analysis to provide a rigorous foundation for one permutation
hashing as illustrated in Figure 1. Consider two sets S1 and S2. We first introduce two definitions,
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for the number of “jointly empty bins” and the number of “matched bins,” respectively:

Nemp =
k∑

j=1

Iemp,j , Nmat =
k∑

j=1

Imat,j (7)

where Iemp,j and Imat,j are defined for the j-th bin, as

Iemp,j =
{

1 if both π(S1) and π(S2) are empty in the j-th bin
0 otherwise (8)

Imat,j =

{ 1 if both π(S1) and π(S1) are not empty and the smallest element of π(S1)
matches the smallest element of π(S2), in the j-th bin

0 otherwise
(9)

Recall the notation: f1 = |S1|, f2 = |S2|, a = |S1∩S2|. We also use f = |S1∪S2| = f1 +f2−a.

Lemma 1

Pr (Nemp = j) =
k−j∑
s=0

(−1)s k!
j!s!(k − j − s)!

f−1∏
t=0

D
(
1− j+s

k

)− t

D − t
, 0 ≤ j ≤ k − 1 (10)

Assume D
(
1− 1

k

) ≥ f = f1 + f2 − a.

E (Nemp)
k

=
f−1∏

j=0

D
(
1− 1

k

)− j

D − j
≤

(
1− 1

k

)f

(11)

E (Nmat)
k

= R

(
1− E (Nemp)

k

)
= R


1−

f−1∏

j=0

D
(
1− 1

k

)− j

D − j


 (12)

Cov (Nmat, Nemp) ≤ 0 ¤ (13)

In practical scenarios, the data are often sparse, i.e., f = f1 + f2 − a ¿ D. In this case, the upper
bound (11)

(
1− 1

k

)f is a good approximation to the true value of E(Nemp)
k . Since

(
1− 1

k

)f ≈
e−f/k, we know that the chance of empty bins is small when f À k. For example, if f/k = 5 then(
1− 1

k

)f ≈ 0.0067. For practical applications, we would expect that f À k (for most data pairs),
otherwise hashing probably would not be too useful anyway. This is why we do not expect empty
bins will significantly impact (if at all) the performance in practical settings.

Lemma 2 shows the following estimator R̂mat of the resemblance is unbiased:

Lemma 2

R̂mat =
Nmat

k −Nemp
, E

(
R̂mat

)
= R (14)

V ar
(
R̂mat

)
= R(1−R)

(
E

(
1

k −Nemp

)(
1 +

1
f − 1

)
− 1

f − 1

)
(15)

E

(
1

k −Nemp

)
=

k−1∑

j=0

Pr (Nemp = j)
k − j

≥ 1
k − E(Nemp)

¤ (16)

The fact that E
(
R̂mat

)
= R may seem surprising as in general ratio estimators are not unbiased.

Note that k−Nemp > 0, because we assume the original data vectors are not completely empty (all-
zero). As expected, when k ¿ f = f1 + f2 − a, Nemp is essentially zero and hence V ar

(
R̂mat

)
≈

R(1−R)
k

. In fact, V ar
(
R̂mat

)
is a bit smaller than R(1−R)

k
, especially for large k.

It is probably not surprising that our one permutation scheme (slightly) outperforms the original
k-permutation scheme (at merely 1/k of the preprocessing cost), because one permutation hashing,
which is “sampling-without-replacement”, provides a better strategy for matrix sparsification.
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4 Strategies for Dealing with Empty Bins
In general, we expect that empty bins should not occur often because E(Nemp)/k ≈ e−f/k, which
is very close to zero if f/k > 5. (Recall f = |S1 ∪ S2|.) If the goal of using minwise hashing is for
data reduction, i.e., reducing the number of nonzeros, then we would expect that f À k anyway.

Nevertheless, in applications where we need the estimators to be inner products, we need strategies
to deal with empty bins in case they occur. Fortunately, we realize a (in retrospect) simple strategy
which can be nicely integrated with linear learning algorithms and performs well.
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Figure 3: Histogram of the numbers of nonzeros
in the webspam dataset (350,000 samples).

Figure 3 plots the histogram of the numbers of
nonzeros in the webspam dataset, which has 350,000
samples. The average number of nonzeros is about
4000 which should be much larger than k (e.g., 500)
for the hashing procedure. On the other hand, about
10% (or 2.8%) of the samples have < 500 (or <
200) nonzeros. Thus, we must deal with empty bins
if we do not want to exclude those data points. For
example, if f = k = 500, then Nemp ≈ e−f/k =
0.3679, which is not small.

The strategy we recommend for linear learning is zero coding, which is tightly coupled with the
strategy of hashed data expansion [16] as reviewed in Sec. 2.2. More details will be elaborated in
Sec. 4.2. Basically, we can encode “*” as “zero” in the expanded space, which means Nmat will
remain the same (after taking the inner product in the expanded space). This strategy, which is
sparsity-preserving, essentially corresponds to the following modified estimator:

R̂
(0)
mat =

Nmat√
k −N

(1)
emp

√
k −N

(2)
emp

(17)

where N
(1)
emp =

∑k
j=1 I

(1)
emp,j and N

(2)
emp =

∑k
j=1 I

(2)
emp,j are the numbers of empty bins in π(S1)

and π(S2), respectively. This modified estimator makes sense for a number of reasons.

Basically, since each data vector is processed and coded separately, we actually do not know Nemp

(the number of jointly empty bins) until we see both π(S1) and π(S2). In other words, we can not
really compute Nemp if we want to use linear estimators. On the other hand, N

(1)
emp and N

(2)
emp are

always available. In fact, the use of
√

k −N
(1)
emp

√
k −N

(2)
emp in the denominator corresponds to the

normalizing step which is needed before feeding the data to a solver for SVM or logistic regression.

When N
(1)
emp = N

(2)
emp = Nemp, (17) is equivalent to the original R̂mat. When two original vectors

are very similar (e.g., large R), N
(1)
emp and N

(2)
emp will be close to Nemp. When two sets are highly

unbalanced, using (17) will overestimate R; however, in this case, Nmat will be so small that the
absolute error will not be large.

4.1 The m-Permutation Scheme with 1 < m ¿ k

If one would like to further (significantly) reduce the chance of the occurrences of empty bins,
here we shall mention that one does not really have to strictly follow “one permutation,” since one
can always conduct m permutations with k′ = k/m and concatenate the hashed data. Once the
preprocessing is no longer the bottleneck, it matters less whether we use 1 permutation or (e.g.,)
m = 3 permutations. The chance of having empty bins decreases exponentially with increasing m.

4.2 An Example of The “Zero Coding” Strategy for Linear Learning

Sec. 2.2 reviewed the data-expansion strategy used by [16] for integrating b-bit minwise hashing
with linear learning. We will adopt a similar strategy with modifications for considering empty bins.

We use a similar example as in Sec. 2.2. Suppose we apply our one permutation hashing scheme and
use k = 4 bins. For the first data vector, the hashed values are [12013, 25964, 20191, ∗] (i.e., the
4-th bin is empty). Suppose again we use b = 2 bits. With the “zero coding” strategy, our procedure
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is summarized as follows:
Original hashed values (k = 4) : 12013 25964 20191 ∗
Original binary representations : 010111011101101 110010101101100 100111011011111 ∗
Lowest b = 2 binary digits : 01 00 11 ∗
Expanded 2b = 4 binary digits : 0010 0001 1000 0000

New feature vector fed to a solver :
1√

4− 1
× [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]

We apply the same procedure to all feature vectors in the data matrix to generate a new data matrix.
The normalization factor 1√

k−N
(i)
emp

varies, depending on the number of empty bins in the i-th vector.

5 Experimental Results on the Webspam Dataset
The webspam dataset has 350,000 samples and 16,609,143 features. Each feature vector has on
average about 4000 nonzeros; see Figure 3. Following [16], we use 80% of samples for training
and the remaining 20% for testing. We conduct extensive experiments on linear SVM and logistic
regression, using our proposed one permutation hashing scheme with k ∈ {26, 27, 28, 29} and b ∈
{1, 2, 4, 6, 8}. For convenience, we use D = 224 = 16, 777, 216, which is divisible by k.

There is one regularization parameter C in linear SVM and logistic regression. Since our purpose
is to demonstrate the effectiveness of our proposed hashing scheme, we simply provide the results
for a wide range of C values and assume that the best performance is achievable if we conduct
cross-validations. This way, interested readers may be able to easily reproduce our experiments.

Figure 4 presents the test accuracies for both linear SVM (upper panels) and logistic regression (bot-
tom panels). Clearly, when k = 512 (or even 256) and b = 8, b-bit one permutation hashing achieves
similar test accuracies as using the original data. Also, compared to the original k-permutation
scheme as in [16], our one permutation scheme achieves similar (or even slightly better) accuracies.
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Figure 4: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged
over 50 repetitions. The accuracies of using the original data are plotted as dashed (red, if color is
available) curves with “diamond” markers. C is the regularization parameter. Compared with the
original k-permutation minwise hashing (dashed and blue if color is available), the one permutation
hashing scheme achieves similar accuracies, or even slightly better accuracies when k is large.

The empirical results on the webspam datasets are encouraging because they verify that our proposed
one permutation hashing scheme performs as well as (or even slightly better than) the original k-
permutation scheme, at merely 1/k of the original preprocessing cost. On the other hand, it would
be more interesting, from the perspective of testing the robustness of our algorithm, to conduct
experiments on a dataset (e.g., news20) where the empty bins will occur much more frequently.

6 Experimental Results on the News20 Dataset
The news20 dataset (with 20,000 samples and 1,355,191 features) is a very small dataset in not-too-
high dimensions. The average number of nonzeros per feature vector is about 500, which is also
small. Therefore, this is more like a contrived example and we use it just to verify that our one
permutation scheme (with the zero coding strategy) still works very well even when we let k be
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as large as 4096 (i.e., most of the bins are empty). In fact, the one permutation schemes achieves
noticeably better accuracies than the original k-permutation scheme. We believe this is because the
one permutation scheme is “sample-without-replacement” and provides a better matrix sparsification
strategy without “contaminating” the original data matrix too much.

We experiment with k ∈ {25, 26, 27, 28, 29, 210, 211, 212} and b ∈ {1, 2, 4, 6, 8}, for both one per-
mutation scheme and k-permutation scheme. We use 10,000 samples for training and the other
10,000 samples for testing. For convenience, we let D = 221 (which is larger than 1,355,191).

Figure 5 and Figure 6 present the test accuracies for linear SVM and logistic regression, respectively.
When k is small (e.g., k ≤ 64) both the one permutation scheme and the original k-permutation
scheme perform similarly. For larger k values (especially as k ≥ 256), however, our one permu-
tation scheme noticeably outperforms the k-permutation scheme. Using the original data, the test
accuracies are about 98%. Our one permutation scheme with k ≥ 512 and b = 8 essentially achieves
the original test accuracies, while the k-permutation scheme could only reach about 97.5%.
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Figure 5: Test accuracies of linear SVM averaged over 100 repetitions. The one permutation scheme
noticeably outperforms the original k-permutation scheme especially when k is not small.
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Figure 6: Test accuracies of logistic regression averaged over 100 repetitions. The one permutation
scheme noticeably outperforms the original k-permutation scheme especially when k is not small.

7 Conclusion
A new hashing algorithm is developed for large-scale search and learning in massive binary data.
Compared with the original k-permutation (e.g., k = 500) minwise hashing (which is a standard
procedure in the context of search), our method requires only one permutation and can achieve
similar or even better accuracies at merely 1/k of the original preprocessing cost. We expect that one
permutation hashing (or its variant) will be adopted in practice. See more details in arXiv:1208.1259.
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