NIPS Proceedingsβ

The topographic unsupervised learning of natural sounds in the auditory cortex

Part of: Advances in Neural Information Processing Systems 25 (NIPS 2012)

[PDF] [BibTeX]

Authors

Abstract

The computational modelling of the primary auditory cortex (A1) has been less fruitful than that of the primary visual cortex (V1) due to the less organized properties of A1. Greater disorder has recently been demonstrated for the tonotopy of A1 that has traditionally been considered to be as ordered as the retinotopy of V1. This disorder appears to be incongruous, given the uniformity of the neocortex; however, we hypothesized that both A1 and V1 would adopt an efficient coding strategy and that the disorder in A1 reflects natural sound statistics. To provide a computational model of the tonotopic disorder in A1, we used a model that was originally proposed for the smooth V1 map. In contrast to natural images, natural sounds exhibit distant correlations, which were learned and reflected in the disordered map. The auditory model predicted harmonic relationships among neighbouring A1 cells; furthermore, the same mechanism used to model V1 complex cells reproduced nonlinear responses similar to the pitch selectivity. These results contribute to the understanding of the sensory cortices of different modalities in a novel and integrated manner.