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Abstract

We present a new model based on Gaussian processes (GPs) for learning pair-
wise preferences expressed by multiple users. Inference is simplified by using
a preference kernel for GPs which allows us to combine supervised GP learn-
ing of user preferences with unsupervised dimensionality reduction for multi-user
systems. The model not only exploits collaborative information from the shared
structure in user behavior, but may also incorporate user features if they are avail-
able. Approximate inference is implemented using a combination of expectation
propagation and variational Bayes. Finally, we present an efficient active learning
strategy for querying preferences. The proposed technique performs favorably on
real-world data against state-of-the-art multi-user preference learning algorithms.

1 Introduction

Preference learning is concerned with making inference from data consisting of pairs of items and
corresponding binary labels indicating user preferences. This data arises in many contexts, including
medical assistive technologies [1], graphical design [3] and recommendation systems [5]. A popular
modeling approach assumes the existence of a utility function f such that f(x) gives the utility of
an item with feature vector x; f(xi) > f(xj) indicates that item i is preferred to item j. Bayesian
methods can be used to learn f , for example, by modeling f independently for each user as a draw
from a Gaussian process (GP) prior [4]. However, when data from many users is available, such
methods do not leverage similarities in preferences across users. Current multi-user approaches
require that features are available for each user and assume that users with similar features have
similar preferences [2], or perform single-user learning, ignoring user features, but tie information
across users with a hierachical prior [1]. These methods are not flexible and can only address one of
two possible scenarios: a) user features are available and they are useful for prediction and b) when
this is not the case. Additionally, they involve at least solving U GP problems, where U is the total
number of users. This cost is prohibitive even for modest U . Our approach, by contrast, can address
both a) and b) by combining informative user features with collaborative information. Furthermore,
we perform scalable inference which can handle problems with large U .

Our new multi-user model is based on dimensionality reduction ideas from the field of collabora-
tive filtering [19, 16]. Unsupervised learning of similarities in users’ behavior is exploited without
requiring access to user-specific feature vectors. However, if these are available it may be desirable
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to incorporate them for predictions; our model can use these user-specific features as well. The
proposed method is based on a connection between preference learning and GP binary classifica-
tion. We show that both problems are equivalent when a covariance function called the preference
kernel is used. This specific kernel simplifies the inference process, allowing us to implement more
complex models such as the proposed multi-user approach. Finally, in real scenarios, querying users
for preference may be costly and intrusive, so it is desirable to learn preferences using the least
data possible. With this objective, we present BALD (Bayesian active learning by disagreement), an
efficient active learning strategy for binary classification problems with GP priors.

2 Pairwise preference learning as special case of binary classification

The problem of pairwise preference learning can be recast as a special case of binary classification.
Let us consider two items i and j with corresponding feature vectors xi,xj ∈ X . In the pairwise
preference learning problem, we are given pairs of feature vectors xi and xj and corresponding class
labels y ∈ {−1, 1} such that y = 1 if the user prefers item i to item j and y = −1 otherwise. The
task of interest is then to predict the class label for a new pair of feature vectors not seen before.
This problem can be addressed by introducing a latent preference function f : X 7→ R such that
f(xi) > f(xj) whenever the user prefers item i to item j and f(xi) < f(xj) otherwise [4]. When
the evaluations of f are contaminated with Gaussian noise with zero mean and (without loss of
generality) variance 1/2, we obtain the following likelihood for f given xi, xj and y

P(y|xi,xj , f) = Φ[(f [xi]− f [xj ])y] , (1)

where Φ is the standard Gaussian cumulative distribution function. The preference learning problem
can be solved by combining a GP prior on f with the likelihood function in (1) [4]. The posterior
for f can then be used to make predictions on the user preferences for new pairs of items.

Note that the likelihood (1) depends only on the difference between f(xi) and f(xj). Let g : X 2 7→
R be the latent function g(xi,xj) = f(xi) − f(xj). We can recast the inference problem in terms
of g and ignore f . When the evaluation of g is contaminated with standard Gaussian noise, the
likelihood for g given xi, xj and y is

P(y|xi,xj , g) = Φ[g(xi,xj)y] . (2)

Since g is obtained from f through a linear operation, the GP prior on f induces a GP prior on g. The
covariance function kpref of the GP prior on g can be computed from the covariance function k of the
GP on f as kpref((xi,xj), (xk,xl)) = k(xi,xk)+k(xj ,xl)−k(xi,xl)−k(xj ,xk). The derivations
can be found in Section 1 of the supplementary material. We call kpref the preference kernel. The
same kernel function can be derived from a large margin classification viewpoint [6]. However, to
our knowledge, the preference kernel has not been used previously for GP-based models.

The combination of (2) with a GP prior based on the preference kernel allows us to transform the
pairwise preference learning problem into binary classification with GPs. This means that state-of-
the-art methods for GP binary classification, such as expectation propagation [14], can be applied
directly to preference learning. Furthermore, the simplified likelihood (2) allows us to implement
complex methods such as the multi-user approach which is described in the following section.

3 Multi-user preference learning

Consider I items with feature vectors xi ∈ X for i = 1, . . . , I . The single-user learning approach
assumes an independent latent function for the u-th user, gu : X 2 7→ R. Our approach to the multi-
user problem is to assume common structure in the user latent functions. In particular, we assume a
set of D shared latent functions, hd : X 2 7→ R for d = 1, . . . , D, such that the user latent functions
are generated by a linear combination of these functions, namely

gu(xj ,xk) =

D∑
d=1

wu,dhd(xj ,xk) , (3)

here wu,d ∈ R is the weight given to function hd for user u. We place a GP prior over the shared
latent functions h1, . . . , hD using the preference kernel described in the previous section. This
model allows the preferences of the different users to share some common structure represented by
the latent functions h1, . . . , hD. This approach is similar to dimensionality reduction methods that
are commonly used for addressing collaborative filtering problems [19, 16].
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We may extend this model further to the case in which, for each user u, there is a feature vector
uu ∈ U containing information that might be useful for prediction. We denote by U the set of all
the users’ feature vectors, that is, U = {u1, . . . ,uU}. The user features are incorporated now by
placing a separate GP prior over the users weights. In particular, we replace the scalars wu,d in (3)
with functions w′d(uu) : U → R. These weight functions describe the contribution of shared latent
function hd to the user latent function gu as a function of the user feature vector uu.

In the multi-user setting we are given a list L = {p1, . . . , pP } with all the pairs of items evaluated
by the users, where P ≤ I(I − 1)/2 (the maximum number of pairs). The data consists of L, the
sets of feature vectors for the users U (if available), the item features X = {x1, . . . ,xI}, and U
sets of preference judgements, one for each user, D = {{zu,i, yu,i}Mu

i=1}Uu=1, where zu,i indexes the
i-th pair evaluated by user u, yi,u = 1 if this user prefers the first item in the pair to the second and
yi,u = −1 otherwise. Mu is the number of preference judgements made by the u-th user.

3.1 Probabilistic description

To address the task of predicting preference on unseen item pairs we cast the model into a probabilis-
tic framework. Let G be anU×P ‘user-function’ matrix, where each row corresponds to a particular
user’s latent function, that is, the entry in the u-th column and i-th row is gu,i = gu(xα(i),xβ(i)) and
α(i) and β(i) denote respectively the first and second item in the i-th pair from L. Let H be aD×P
‘shared-function’ matrix, where each row represents the shared latent functions, that is, the entry in
the d-th row and i-th column is hd,i = hd(xα(i),xβ(i)). Finally, we introduce the U × D weight
matrix W such that each row contains a user’s weights, that is, the entry in the u-th row and d-th
column of this matrix is w′d(uu). Note that G = WH represents equation (3) in matrix form. Let
T be the U ×P target matrix given by T = sign[G+E], where E is an U ×P noise matrix whose
entries are sampled i.i.d. from a standard Gaussian distribution and the function “sign” retains only
the sign of the elements in a matrix. The observations yu,i in D = {{zu,i, yu,i}Mu

i=1}Uu=1 are mapped
to the corresponding entries of T using tu,zu,i = yu,i. Let T(D) and G(D) represent the elements of
T and G corresponding only to the available observations yu,i in D. Then, the likelihood for G(D)

given T(D) and conditional distribution for G(D) given H and W are

P(T(D)|G(D)) =

U∏
u=1

Mu∏
i=1

Φ[tu,zu,igu,zu,i ] and P(G(D)|W,H) =

U∏
u=1

Mu∏
i=1

δ[gu,zu,i −wuh·,zu,i ]

respectively, where wu is the u-th row in W, h·,i is the i-th column in H and δ represents a point
probability mass at zero. We now select the priors for W and H. We assume that each function
w′1, . . . , w

′
D is sampled a priori from a GP with zero mean and specific covariance function. Let

Kusers be the U × U covariance matrix for entries in each column of matrix W. Then

P(W|U) =

D∏
d=1

N (w·,d|0,Kusers) , (4)

where w·,d is the d-th column in W. If user features are unavailable, Kusers becomes the identity
matrix. Finally, we assume that each shared latent function h1, . . . , hD is sampled a priori from a
GP with zero mean and covariance function given by a preference kernel. Let Kitems be the P × P
preference covariance matrix for the item pairs in L. The prior for H is then

P(H|X,L) =

D∏
j=1

N (hj |0,Kitems) , (5)

where hj is the j-th row in H. The resulting posterior for W, H and G(D) is

P(W,H,G(D)|T(D),X,L) =
P(T(D)|G(D))P(G(D)|W,H)P(W|U)P(H|X,L)

P(T(D|X,L)
. (6)

Given a new item pair pP+1, we can compute the predictive distribution for the preference of the
u-th user (1 ≤ u ≤ U ) on this pair by integrating out the parameters H,W and G(D) as follows:

P(tu,P+1|T(D),X,L, pP+1) =

∫
P(tu,P+1|gu,P+1)P(gu,P+1|wu,h·,P+1)

P(h·,P+1|H,X,L, pP+1)P(H,W,G(D)|T(D),X,L) dH dW dG(D) , (7)

where P(tu,P+1|gu,P+1) = Φ[tu,P+1gu,P+1], P(gu,P+1|wu,h·,P+1) = δ[gu,P+1 −wuh·,P+1],

P(h·,P+1|H,X,L, pP+1) =

D∏
d=1

N (hd,P+1|kT
?K
−1
itemshd, k? − kT

?K
−1
itemsk?) (8)
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Figure 1: Toy example with 1D input. Circles
and crosses denote labelled data. The plot
shows the mean and variance of the GP pre-
dictive distribution. Maximum Entropy Sam-
pling (MES) samples from the region of high-
est marginal uncertainty, ignoring the second
term in (10). BALD samples from the region
of greatest uncertainty in the latent function.

k? is the prior variance of hd(xα(P+1),xβ(P+1)) and k? is a P -dimensional vector that contains
the prior covariances between hd(xα(P+1),xβ(P+1)) and hd(xα(1),xβ(1)), . . . , hd(xα(P ),xβ(P )).
Computing (6) or (8) is infeasible and approximations must be used. For this, we use a combination
of expectation propagation (EP) [14] and variation Bayes (VB) [7]. Empirical studies show that EP
obtains state-of-the-art performance in the related problem of GP binary classification [15].

We want to learn user preferences with the proposed model from the least amount of data possible.
Therefore we desire to query users actively about their preferences on the most informative pairs of
items [3]. Next, we describe a novel method to implement this strategy. This method exploits the
preference kernel and so may be trivially generalized to GP binary classification problems also.

4 Bayesian active learning by disagreement

The goal of active learning is to choose item pairs such that we learn the preference functions for the
users using minimal data. Information theoretic approaches to active learning are popular because
they do not require prior knowledge of loss functions or test domains. The central goal is to iden-
tify the new data point that maximizes the expected reduction in posterior entropy. For preference
learning (see Section 2), this implies choosing the new item features xi and xj that maximize

H[P(g|D)]− EP(y|xi,xj ,D) [H[P(g|y,xi,xj ,D)]] , (9)
where D are the user preferences observed so far and H[p(x)] = −

∫
p(x) log p(x) dx represents

the Shannon entropy. This framework, originally proposed in [10], is difficult to apply directly to
models based on GPs. In these models, entropies can be poorly defined or their computation can
be intractable. In practice, current approaches make approximations for the computation of the
posterior entropy [12, 9]. However, a second difficulty arises; if n new data points are available for
selection, with |{−1, 1}| = 2 possible values for y. Then O(2n) potentially expensive posterior
updates are required to find the maximizer of (9): one for every available feature vector and possible
class value. This is often too expensive in practice.

A solution consists in noting that (9) is equivalent to the conditioned mutual information between y
and g. Using this we can rearrange this equation to compute entropies in y space:

H[P(y|xi,xj ,D)]− EP(g|D) [H [P(y|xi,xj , g)]] . (10)
This overcomes the previous challenges. Entropies are now evaluated in output space, which has low
dimension. Furthermore, g is now conditioned only upon D, so only O(1) updates of the posterior
distribution are required. We only need to recompute the posterior once per data point selected, not
for every possible data point under consideration. Expression (10) also provides us with an intuition
about the objective; we seek the xi and xj for which a) the model is marginally uncertain about
y (high H[P(y|xi,xj ,D)]) and b) conditioned on a particular value of g the model is confident
about y (low EP(g|D) [H[P(y|xi,xj , g])]). This can be interpreted as seeking the pair xi and xj
for which the latent functions g, under the posterior, ‘disagree’ with each other the most about the
outcome, that is, the preference judgement. Therefore, we refer to this objective as Bayesian Active
Learning by Disagreement (BALD). This method is independent of the approach used for inference,
something which does not hold for the techniques described in [12, 8, 9]. In the following section
we show how (10) can be applied to binary classification with GPs, and hence via the preference
kernel also to any preference learning problem.

4.1 BALD in binary classification with GPs

Most approximate inference methods for the problem of binary classification with GPs produce
a Gaussian approximation to the posterior distribution of f , the latent function of interest. In
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the binary GP classifier, the entropy of y given the corresponding value of f can be expressed
in terms of the binary entropy function, h[f ] = −f log f − (1 − f) log(1 − f). In particular,
H[p(y|x, f)] = h [Φ(f(x)]. When a Gaussian is used to approximate the posterior of f , we have
that for each x, fx = f(x) will follow a Gaussian distribution with mean µx and variance σ2

x. The
first term in (10), that is, H[p(y|x,D)], can be handled analytically in this case: H[p(y|x,D)] ≈
h
[∫

Φ(fx)N (fx|µx, σ
2
x)dfx

]
= h

[
Φ
(
µx(σ2

x + 1)−1/2
)]

, where ≈ represents here the Gaussian
approximation to the posterior of fx. The second term in (10), that is, Ep(f |D) [H[p(y|x, f)]], can
be approximated as Ep(f |D) [H[p(y|x, f)]] ≈ C(σ2

x +C2)−1/2 exp
(
−µ2

x(2
(
σ2
x + C2

)
)−1
)
, where

C =
√
π log 2/2. This result is obtained by using the Gaussian approximation to the posterior of fx

and then approximating h[Φ(fx)] by the squared exponential curve exp(−f2x/π log 2) (details can
be found in Section 3 of the supplementary material).

To summarize, the BALD algorithm for active binary GP classification / preference learning first
applies any approximate inference method to obtain the posterior mean µx and variance σ2

x of f at
each point of interest x. Then, it selects the feature vector x that maximizes the objective

h
[
Φ
(
µx(σ2

x + 1)−1/2
)]
− C(σ2

x + C2)−1/2 exp
(
−µ2

x(2
(
σ2
x + C2))−1) . (11)

BALD assigns a high value to the feature vector x when the model is both uncertain about the label
(µx close to 0) and there is high uncertainty about fx (σ2

x is large). The second term prevents BALD
from sampling in regions where the model knows that the label is uncertain. Figure 1 illustrates
the differences between BALD and Maximum Entropy Sampling [17] (details in the supplementary
material, Section 5). MES considers only marginal uncertainty (the first term in (11)), and hence
seeks data in an uninformative region of the plot. By contrast, BALD samples data from the region
of greatest uncertainty in the latent function.

5 Expectation propagation and variational Bayes

Approximate inference in our model is implemented using a combination of expectation propagation
(EP) [13] and variational Bayes (VB) [7]. Here, we briefly describe the method, but full details are
in Section 4 of the supplementary. We approximate the posterior (6) by the parametric distribution

Q(W,H,G(D)) =

[
U∏

u=1

D∏
d=1

N (wud|mw
u,d, v

w
u,d)

][
D∏

d=1

P∏
i=1

N (hd,i|mh
d,i, v

h
d,i)

]
[

N∏
u=1

Mu∏
j=1

N (gu,zu,j |m
g
u,j , v

g
u,j)

]
, (12)

where mw
u,d, vwu,d, mh

d,i, v
h
d,i, m

g
u,j , and vgu,j are free parameters to be determined by EP

and the superscripts w, h and g indicate the random variables described by these parameters.
The joint distribution P(G(D),W,H,T(D),X, `) can be factorized into four factors f1, . . . , f4,
namely, P(G(D),W,H,T(D),X, `) =

∏4
a=1 fa(G(D),W,H), where f1(G(D),W,H) =

P(T(D)|G(D)), f2(G(D),W,H) = P(G(D)|W,H), f3(G(D),W,H) = P(W|U) and
f4(G(D),W,H) = P(H|X, `). EP approximates these exact factors by approximate factors
f̂1(W,H,G(D)), . . . , f̂4(W,H,G(D)) that have the same functional form as Q

f̂a(G(D),W,H) =

[
U∏

u=1

D∏
d=1

N (wud|m̂a,w
u,d , v̂

a,w
u,d )

][
D∏

d=1

P∏
i=1

N (hd,i|m̂a,h
d,i , v̂

a,h
d,i )

]
[

N∏
u=1

Mu∏
j=1

N (gu,zu,j |m̂
a,g
u,j , v̂

a,g
u,j )

]
ŝa , (13)

where a = 1, . . . , 4 and m̂a,w
u,d , v̂a,wu,d , m̂a,h

d,i , v̂a,hd,i , m̂a,g
u,j , v̂

a,g
u,j and ŝa are free parameters. Note that

Q is the normalized product of f̂1, . . . , f̂4. The first step of EP is to initialize f̂1, . . . , f̂4 and Q
to be uniform. After that, EP iteratively refines of f̂1, . . . , f̂4 by minimizing the Kullback-Leibler
(KL) divergence between the product of Q\a and fa and the product of Q\a and f̂a, where Q\a is
the ratio between Q and f̂a. However, this does not perform well for refining f̂2; details on this
problem can be found in Section 4 of the supplementary material and in [19]. For this factor we
follow a VB approach. Instead of minimizing KL(Q\2f2‖Q\2f̂2) with respect to the parameters of
f̂2, we refine this approximate factor so that the reversed version of the KL divergence is minimized,
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that is, we minimize KL(Q\2f̂2‖Q\2f2). EP iteratively refines all the approximate factors until
convergence. This method also approximates the predictive distribution (7). For this, we replace the
exact posterior in (7) with Q. Finally, EP can also approximate the normalization constant in (6)
(the model evidence) as the integral of the product of all the approximate factors f̂1, . . . , f̂4.

5.1 A sparse approximation to speed up computation

The cost of GPs is cubic in the number of function evaluations. In our case, refining f̂3 has cost
O(DU3), where U is the number of users, and D the number of shared latent functions. The cost of
refining f̂4 is O(DP 3), where P is the number of observed item pairs. These costs can be reduced
by approximating Kusers and Kitems in (4) and (5). We use the FITC approximation [18]. Under this
approximation, an n×n covariance matrix K generated by the evaluation of a covariance function at
n locations is approximated by K′ = Q+diag(K−Q), where Q = Knn0K

−1
n0n0

KT
nn0

, Kn0n0 is the
n0×n0 matrix generated by the evaluation of the covariance function at all possible combinations of
only n0 < n locations or pseudo-inputs and Knn0 is the n×n0 matrix with the covariances between
all possible combinations of original locations and pseudo-inputs. These approximations allow us
to refine f̂3 and f̂4 in O(DU2

0U) and O(DP 2
0P ) operations, where U0 and P0 are the number of

pseudo-inputs for the users and for the item pairs, respectively. A detailed description of the EP
updates based on the FITC approximation is given in Section 4.4 of the supplementary material.

6 Experiments and Discussion

The performance of our collaborative preference model with the BALD active learning strategy is
evaluated in a series of experiments with simulated and real-world data. The analyzed datasets
include a) synthetic data generated from the probabilistic model assumed by the proposed multi-
user method (Synthetic), b) a collection of user preferences on different movies (MovieLens), c) the
number of votes obtained by different political parties in the 2010 UK general election (Election),
d) preferences of users about different types of sushi (Sushi), and finally, e) information regarding
the concentration of heavy metals in the Swiss Jura region (Jura). Section 6 in the supplementary
material contains a detailed description of these datasets.

6.1 Comparison with other multi-user methods

Alternative models. Two versions of the proposed collaborative preference (CP) model are used.
The first version (CPU) takes into account the available user features, as described in Section 3.
The second version (CP) ignores these features by replacing Kusers in (4) with the identity matrix.
The first multi-user method we compare to is the approach of Birlitiu et al. (BI) [1]. This method
does not use user features, and captures similarities between users with a hierarchical GP model.
In particular, a common GP prior is assumed for the preference function of each user; using this
prior the model learns the full GP posterior for each user. The second multi-user method is the
technique of Bonilla et al. (BO) [2]. In this model there exists one high-dimensional function
which depends on both the features of the two items to be compared and on the features of the
user who makes the comparison. Relationships between users’ behaviors are captured only via
the user features. We implement BO and BI using the preference kernel and EP for approximate
inference1. The computational costs of BO and BI are rather high; BO has cubic complexity in
the total number of observations i.e. O((

∑U
u=1Mu)3), our model (CPU) has a significantly lower

cost of O(D(U3 + P 3)) (before further speed-up from FITC). BI does not include user features,
but learns U GPs, so has complexity O(UP 3); the equivalent version of our model (CP) has cost
O(NP + DP 3), which is lower because D << U . More details about BI and BO are given in
sections 7 and 8 of the supplementary material. Finally, we consider a single user approach (SU)
which fits a different GP classifier independently to the data of each user.

1Although this is not the same as the original implementations (sampling-based for BI, Laplace approxi-
mation for BO), the preference kernel and EP are likely to augment the performance of these algorithms, and
provides the fairest comparison of the underlying models.
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Table 1: Average test error with 100 users.
Dataset CPU CP BI BO SU
Synthetic 0.162 0.180 0.175 0.157 0.226
Sushi 0.171 0.163 0.160 0.266 0.187
MovieLens 0.182 0.166 0.168 0.302 0.217
Election 0.199 0.123 0.077 0.401 0.300
Jura 0.159 0.153 0.153 0.254 0.181

Table 2: Training times (s) with 100 users.
Dataset CPU CP BI BO SU
Synthetic 7.793 9.498 22.524 311.574 0.927
Sushi 5.694 4.307 20.028 215.136 0.817
MovieLens 5.313 4.013 19.366 69.048 0.604
Election 13.134 12.408 20.880 120.011 0.888
Jura 3.762 2.404 15.234 88.502 0.628

Table 3: Test error for each method and active learning strategy with at most 1000 users.
Dataset CPU-B CPU-E CPU-R CP-B CP-E CP-R SU-B SU-E SU-R
Synthetic 0.135 0.135 0.139 0.153 0.160 0.173 0.249 0.259 0.268
Sushi 0.148 0.153 0.178 0.144 0.151 0.176 0.179 0.197 0.212
MovieLens 0.170 0.176 0.199 0.163 0.170 0.195 0.225 0.235 0.248
Election 0.202 0.158 0.224 0.097 0.093 0.151 0.332 0.346 0.338
Jura 0.143 0.141 0.168 0.138 0.138 0.169 0.176 0.166 0.197

Experimental procedure. Due to the high computational cost of BI and BO, to compare to these
methods we must subsample the datasets, keeping only 100 users. The available data were split
randomly into training and test sets of item pairs, where the training sets contain 20 pairs per user in
Sushi, MovieLens and Election, 15 pairs in Jura and 30 in Synthetic. This was repeated 25 times to
obtain statistically meaningful results. In CPU and CP, we selected the number of latent functions
D to be 20 (see Table 6.1). In general, the proposed models, CPU and CP, are robust to over-fitting
and over-estimation of D does not harm predictive performance. Note that the Synthetic dataset is
generated usingD = 5 and CPU and CP still obtain very good results usingD = 20. This automatic
pruning of unnecessary degrees of freedom seems to be common in methods based on variational
Bayes [11]. We selected the kernel lengthscales to be equal to the median distance between feature
vectors. This leads to good empirical performance for most methods. An exception is BO, where the
kernel hyperparameters are tuned to some held-out data using automatic relevance determination. In
our model, we can also estimate the kernel lengthscales by maximizing the EP approximation of the
model evidence, as illustrated in Section 9 of the supplementary material. This alternative approach
can be used when it is necessary to fine tune the lengthscale parameters to the data. In CPU we
use U0 = 25 pseudo inputs for approximating Kusers. These pseudo inputs are selected randomly
from the set of available data points. Similarly, in CP and CPU, we use P0 = 25 pseudo inputs for
approximating Kitems, except in the Jura and Election datasets (which contain fewer items) where
we use P0 = 15. The results obtained are not sensitive to the number of pseudo inputs used, as long
as the number is not excessively low.

Results. Average test errors are shown in Table 1. Those highlighted in bold are statistically
different to those not highlighted (calculated using a paired t test). Overall, CP and CPU outperform
SU and BO, and breaks even with BI; the final result is notable as BI learns the full mean and
covariance structure across all users, ours uses only a few latent dimensions, which provides the key
to scaling to many more users. CP outperforms CPU in all cases except in the Synthetic dataset.
In the real-world datasets, users with similar features do not seem to have similar preferences and
so correlating behavior of users with similar features is detrimental. In this case, the unsupervised
learning of similarities in user preferences is more useful for prediction than the user features. This
also explains the poor overall results obtained by BO. Finally, running times in seconds are presented
in Table 2. The entries for BO do not include the time spent by this method to tune the kernel hyper-
parameters. CP and CPU are faster than BO and BI. The FITC approximation imposes a large
multiplicative constant in the cost of CP and CPU so for larger datasets the gains are much larger.

6.2 Active learning on large datasets

Here we evaluate the performance of BALD, in particular, we compare CPU, CP, and SU using
BALD (-B), Maximum Entropy Sampling (-E) and random sampling (-R). We now use all the avail-
able users from each dataset, with a maximum of 1000 users. For each user the available preference
data are split randomly into training, pool and test sets with 5, 35 and 5 data points respectively in
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Figure 2: Average test error for CPU, CP and SU, using the strategies BALD (-B), entropy (-E) and
random (-R) for active learning. For clarity, the curves for CPU are included only in the Synthetic
and Election datasets. The complete plots can be found in Section 10 of the supplementary material.

Synthetic, Sushi and MovieLens, 3, 22 and 3 data points in Election and 3, 15 and 3 data points
in Jura. Each method is fitted using the training sets and its performance is then evaluated on the
corresponding test sets. After this, the most informative data point is identified in each of the pool
sets. These data points are moved into the corresponding training sets and the process repeats until
10 of these active additions to the training sets have been completed. The entire process, includ-
ing the dataset splitting is repeated 25 times. Figure 2 shows the learning curve for each method.
For clarity, the curve for CPU is included only for the Synthetic and Election datasets; in the other
datasets CPU is marginally outperformed by CP (see supplementary material, Section 10). Average
errors after 10 queries from the pool set of each user are summarized in Table 3. For each model
(CPU, CP and SU), the results of the best active learning strategy are highlighted in bold. The re-
sults of the best model/active learning strategy combination are underlined. Highlighted results are
statistically significant with respect to non-highlighted results according to a paired t test. BALD
always outperforms random sampling and usually outperforms or obtains equivalent performance
to MES. In particular, BALD significantly outperforms MES in 9 cases, while MES is better than
BALD in only 2 cases.

7 Conclusions

We have proposed a multi-user model that combines collaborative filtering methods with GP binary
preference modeling. We have shown that the task of learning user preferences can be recast as a
particular case of binary classification with GPs when a covariance function called the preference
kernel is used. We have also presented BALD, a novel active learning strategy for binary classifica-
tion models with GPs. The proposed multi-user model with BALD performs favorably on simulated
and real-world data against single-user methods and existing approaches for multi-user preference
learning, whilst having significantly lower computational times than competing multi-user methods.
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