NIPS Proceedingsβ

Controlled Recognition Bounds for Visual Learning and Exploration

Part of: Advances in Neural Information Processing Systems 25 (NIPS 2012)

[PDF] [BibTeX]

Authors

Abstract

We describe the tradeoff between the performance in a visual recognition problem and the control authority that the agent can exercise on the sensing process. We focus on the problem of “visual search” of an object in an otherwise known and static scene, propose a measure of control authority, and relate it to the expected risk and its proxy (conditional entropy of the posterior density). We show this analytically, as well as empirically by simulation using the simplest known model that captures the phenomenology of image formation, including scaling and occlusions. We show that a “passive” agent given a training set can provide no guarantees on performance beyond what is afforded by the priors, and that an “omnipotent” agent, capable of infinite control authority, can achieve arbitrarily good performance (asymptotically).