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Abstract

We present a probabilistic formulation of max-margin matrix factorization and
build accordingly a nonparametric Bayesian model which automatically resolves
the unknown number of latent factors. Our work demonstrates a successful exam-
ple that integrates Bayesian nonparametrics and max-margin learning, which are
conventionally two separate paradigms and enjoy complementary advantages. We
develop an efficient variational algorithm for posterior inference, and our exten-
sive empirical studies on large-scale MovieLens and EachMovie data sets appear
to justify the aforementioned dual advantages.

1 Introduction

Collaborative prediction is a task of predicting users’ potential preferences on currently unrated
items (e.g., movies) based on their currently observed preferences and their relations with others’.
One typical setting formalizes it as a matrix completion problem, i.e., to fill in missing entries (or,
preferences) into a partially observed user-by-item matrix. Often there is extra information available
(e.g., users’ age, gender; movies’ genre, year, etc.) [10] to help with the task.

Among other popular approaches, factor-based models have been used extensively in collaborative
prediction. The underlying idea behind such models is that there is only a small number of latent
factors influencing the preferences. In a linear factor model, a user’s rating of an item is modeled as
a linear combination of these factors, with user-specific coefficients and item-specific factor values.
Thus, given a N ×M preference matrix for N users and M items, a K-factor model fits it with
a N × K coefficient matrix U and a M × K factor matrix V as UV >. Various computational
methods have been successfully developed to implement such an idea, including probabilistic matrix
factorization (PMF) [13, 12] and deterministic reconstruction/approximation error minimization,
e.g., max-margin matrix factorization (M3F) with hinge loss [14, 11, 16].

One common problem in latent factor models is how to determine the number of factors, which
is unknown a priori. A typical solution relies on some general model selection procedure, e.g.,
cross-validation, which explicitly enumerates and compares many candidate models and thus can
be computationally expensive. On the other hand, probabilistic matrix factorization models have
lend themselves naturally to leverage recent advances in Bayesian nonparametrics to bypass explicit
model selection [17, 1]. However, it remains largely unexplored how to borrow such advantages into
deterministic max-margin matrix factorization models, particularly the very successful M3F.

To address the above problem, this paper presents infinite probabilistic max-margin matrix factor-
ization (iPM3F), a nonparametric Bayesian-style M3F model that utilizes nonparametric Bayesian
techniques to automatically resolve the unknown number of latent factors in M3F models. The first
key step towards iPM3F is a general probabilistic formulation of the standard M3F, which is based
on the maximum entropy discrimination principle [4]. We can then principally extend it to a non-
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parametric model, which in theory has an unbounded number of latent factors. To avoid overfitting
we impose a sparsity-inducing Indian buffet process prior on the latent coefficient matrix, selecting
only an appropriate number of active factors. We develop an efficient variational method to infer
posterior distributions and learn parameters (if ever exist) and our extensive empirical results on
MovieLens and EachMovie demonstrate appealing performances.

The rest of the paper is structured as follows. In Section 2, we briefly review the formalization
of max-margin matrix factorization; In Section 3, we present a general probabilistic formulation
of M3F, and then its nonparametric extension and a fully Bayesian formulation; In Section 4, we
discuss how to perform learning and inference; In Section 5, we give empirical results on 2 prevalent
collaborative filtering data sets; And finally, we conclude in Section 6.

2 Max-margin matrix factorization

Given a preference matrix Y ∈ RN×M , which is partially observed and usually sparse, we denote
the observed entry indices by I. The task of traditional matrix factorization is to find a low-rank
matrix X ∈ RN×M to approximate Y under some loss measure, e.g., the commonly used squared
error, and use Xij as the reconstruction of the missing entries Yij wherever ij /∈ I. Max-margin
matrix factorization (M3F) [14] extends the model by using a sparsity-inducing norm regularizer
for a low-norm factorization and adopting hinge loss for the error measure, which is applicable to
binary, discrete ordinal, or categorical data. For the binary case where Yij ∈ {±1} and one predicts
by Ŷij = sign(Xij), the optimization problem of M3F is defined as

min
X

‖X‖∗ + C
∑

ij∈I
h (YijXij) , (1)

where h(x) = max(0, 1 − x) is the hinge loss and ‖X‖∗ is the nuclear norm of X . M3F can be
equivalently reformulated as a semi-definite programming (SDP) and thus learned using standard
SDP solvers, but it is unfortunately very slow and can only scale up to thousands of users and items.

As shown in [14], the nuclear norm can be written in a variational form, namely
‖X‖∗ = min

X=UV>

1

2

(
‖U‖2F + ‖V ‖2F

)
. (2)

Based on the equivalence, a fast M3F model is proposed in [11], which uses gradient descent to
solve an equivalent problem, only on U and V instead

min
U,V

1

2

(
‖U‖2F + ‖V ‖2F

)
+ C

∑

ij∈I
h
(
YijUiV

>
j

)
, (3)

where U ∈ RN×K is the user coefficient matrix, V ∈ RM×K the item factor matrix, and K the
number of latent factors. We use Ui to denote the ith row of U , and Vj likewise.

The fast M3F model can scale up to millions of users and items. But one unaddressed resulting
problem is that it needs to specify the unknown number of latent factors, K, a priori. Below we
present a nonparametric Bayesian approach, which effectively bypasses the model selection problem
and produces very robust prediction. We also design a blockwise coordinate descent algorithm that
directly solves problem (3) rather than working on a smoothing relaxation [11], and it turns out to
be as efficient and accurate. To save space, we defer this part to Appendix B.

3 Nonparametric Bayesian max-margin matrix factorization

Now we present the nonparametric Bayesian max-margin matrix factorization models. We start with
a brief introduction to maximum entropy discrimination, which lays the basis for our methods.

3.1 Maximum entropy discrimination

We consider the binary classification setting since it suffices for our model. Given a set of training
data {(xd, yd)}Dd=1 (yd ∈ {±1}) and a discriminant function F (x;η) parameterized by η, max-
imum entropy discrimination (MED) [4] seeks to learn a distribution p(η) rather than perform a
point estimation of η as is the case with standard SVMs that typically lack a direct probabilistic
interpretation. Accordingly, MED takes expectation over the original discriminant function with
respect to p(η) and has the new prediction rule

ŷ = sign (Ep[F (x;η)]) . (4)
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To find p(η), MED solves the following relative-entropic regularized risk minimization problem

min
p(η)

KL (p(η)‖p0(η)) + C
∑

d

h` (ydEp[F (xd;η)]) , (5)

where p0(η) is the pre-specified prior distribution of η, KL(p‖p0) the Kullback-Leibler divergence,
or relative entropy, between two distributions,C the regularization constant and h`(x) = max(0, `−
x) (` > 0) the generalized hinge loss.

By defining F as the log-likelihood ratio of a Bayesian generative model1, MED provides an elegant
way to integrate discriminative max-margin learning and Bayesian generative modeling. In fact,
MED subsumes SVM as a special case and has been extended to incorporate latent variables [5, 18]
and perform structured output prediction [21]. Recent work has further extended MED to unite
Bayesian nonparametrics and max-margin learning [20, 19], which have been largely treated as
isolated topics, for learning better classification models. The present work contributes by introducing
a novel generalization of MED to handle the challenging matrix factorization problems.

3.2 Probabilistic max-margin matrix factorization

Like PMF [12], we treat U and V as random variables, whose joint prior distribution is denoted by
p0(U, V ). Then, our goal is to infer their posterior distribution p(U, V )2 after a set of observations
have been provided. We first consider the binary case where Yij takes value from {±1}. If the
factorization, U and V , is given, we can naturally define the discriminant function F as

F ((i, j);U, V ) = UiV
>
j . (6)

Furthermore, since bothU and V are random variables, we need to resolve the uncertainty in order to
derive a prediction rule. Here, we choose the canonical MED approach, namely the expectation op-
erator, which is linear and has shown promise in [18, 19], rather than the log-marginalized-likelihood
ratio approach [5], which requires an extra likelihood model. Hence, substituting the discriminant
function (6) into (4), we have the prediction rule

Ŷij = sign
(
Ep[UiV >j ]

)
. (7)

Then following the principle of MED learning, we define probabilistic max-margin matrix factor-
ization (PM3F) as solving the following optimization problem

min
p(U,V )

KL(p(U, V )‖p0(U, V )) + C
∑

ij∈I
h`
(
YijEp[UiV >j ]

)
. (8)

Note that our probabilistic formulation is strictly more general than the original M3F model, which
is in fact a special case of PM3F under a standard Gaussian prior and a mean-field assumption
on p(U, V ). Specifically, if we assume p0(U, V ) =

∏
iN (Ui|0, I)

∏
j N (Vj |0, I) and p(U, V ) =

p(U)p(V ), then one can prove p(U) =
∏
iN (Ui|Φi, I), p(V ) =

∏
j N (Vj |Ψj , I) and PM3F reduces

accordingly to a M3F problem (3), namely

min
Φ,Ψ

1

2
(‖Φ‖2F + ‖Ψ‖2F ) + C

∑

ij∈I
h`
(
YijΦiΨ

>
j

)
. (9)

Ratings: For ordinal ratings Yij ∈ {1, 2, . . . , L}, we use the same strategy as in [14] to define the
loss function. Specifically, we introduce thresholds θ0 ≤ θ1 ≤ · · · ≤ θL, where θ0 = −∞ and
θL = +∞, to discretize R into L intervals. The prediction rule is changed accordingly to

Ŷij = max
{
r|Ep[UiV >j ] ≥ θr

}
+ 1. (10)

In a hard-margin setting, we would require that
θYij−1 + ` ≤ Ep[UiV >j ] ≤ θYij − `. (11)

While in a soft-margin setting, we define the loss as

∑

ij∈I

( Yij−1∑

r=1

h`(Ep[UiV >j ]− θr) +

L−1∑

r=Yij

h`(θr − Ep[UiV >j ])
)

=
∑

ij∈I

L−1∑

r=1

h`
(
T rij(θr − Ep[UiV >j ])

)
(12)

1F can also be directly specified without any reference to probabilistic models [4], as is our case.
2We abbreviated the posterior p(U, V |Y ) since we don’t specify the likelihood p(Y |U, V ) anyway.
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where T rij =

{
+1 for r ≥ Yij
−1 for r < Yij

. The loss thus defined is an upper bound to the sum of absolute

differences between the predicted ratings and the true ratings, a loss measure closely related to
Normalized Mean Absolute Error (NMAE) [7, 14].

Furthermore, we can learn a more flexible model to capture users’ diverse rating criteria by replacing
user-common thresholds θr in the prediction rule (10) and the loss (12) with user-specific ones θir.

Finally, we may as well treat the additionally introduced thresholds θir as random variables and infer
their posterior distribution, hereby giving the full PM3F model as solving

min
p(U,V,θ)

KL(p(U, V, θ)‖p0(U, V, θ)) + C
∑

ij∈I

L−1∑

r=1

h`
(
T rij(Ep[θir]− Ep[UiV >j ])

)
. (13)

3.3 Infinite PM3F (iPM3F)

As we have stated, one common problem with finite factor-based models, including PM3F, is that we
need to explicitly select the number of latent factors, i.e., K. In this section, we present an infinite
PM3F model which, through Bayesian nonparametric techniques, automatically adapts and selects
the number of latent factors during learning.

Without loss of generality, we consider learning a binary3 coefficient matrix Z ∈ {0, 1}N×∞. For
finite-sized binary matrices, we may define their prior as given by a Beta-Bernoulli process [8].
While in the infinite case, we allow Z to have an infinite number of columns. Similar to the
nonparametric matrix factorization model [17], we adopt IBP prior over unbounded binary matrices
as previously established in [3] and furthermore, we focus on its stick-breaking construction [15],
which facilitates the development of efficient inference algorithms. Specifically, let πk ∈ (0, 1) be
a parameter associated with each column of Z (with respect to its left-ordered equivalent class).
Then the IBP prior can be described as given by the following generative process

Zik ∼ Bernoulli(πk) i.i.d. for i = 1, . . . , N (∀k), (14)

π1 = ν1, πk = νkπk−1 =

k∏

i=1

νi, where νi ∼ Beta(α, 1) i.i.d. for i = 1, . . . ,+∞. (15)

This process results in a descending sequence of πk. Specifically, given a finite data set (N < +∞),
the probability of seeing the kth factor decreases exponentially with k and the number of active
factors K+ follows a Poisson(αHN ), where HN is the N th harmonic number. Alternatively, we
can use a Beta process prior over Z as in [9].

As for the counterpart, we place an isotropic Gaussian prior over the item factor matrix V . Prior
specified, we may follow the above probabilistic framework to perform max-margin training, with
U replaced by Z. In summary, the stick-breaking construction for the IBP prior results in an
augmented iPM3F problem for binary data as

min
p(ν,Z,V )

KL(p(ν, Z, V )‖p0(ν, Z, V )) + C
∑

ij∈I
h`
(
YijEp[ZiV >j ]

)
, (16)

where p0(ν, Z, V ) = p0(ν)p0(Z|ν)p0(V ) with

νk ∼ Beta(α, 1) i.i.d. for k = 1, . . . ,+∞,
Zik|ν ∼ Bernoulli(πk) i.i.d. for i = 1, . . . , N (∀k),

Vjk ∼ N (0, σ2) i.i.d. for j = 1, . . . ,M, k = 1, . . . ,+∞.

For ordinal ratings, we augment the iPM3F problem from (13) likewise and, apart from adopting the
same prior assumptions for ν, Z and V , assume p0(θ) = p0(θ|ν, Z, V ) with

θir ∼ N (ρr, ς
2) i.i.d. for i = 1, . . . , N, r = 1, . . . , L− 1,

where ρ1 < · · · < ρL−1 are specified as a prior guidance towards an ascending sequence of large-
margin thresholds.

3Learning real-valued coefficients can be easily done as in [3] by defining U = Z ◦ W , where W is a
real-valued matrix and ◦ denotes the Hadamard product or element-wise product.
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3.4 The fully Bayesian model (iBPM3F)

To take iPM3F one step further towards a Bayesian-style model, we introduce priors for hyper-
parameters and perform fully-Bayesian inference [12], where model parameters and hyper-
parameters are integrated out when making prediction. This approach naturally fits in our MED-
based model thanks to the adoption of the expectation operator when defining prediction rule (7)
and (10). Another observation is that the hyper-parameter σ in a way serves the same role as the
regularization constant C, and thus we also try simplifying the model by omitting C in iBPM3F.

We admit though, however many level of hyper-parameters are stacked and treated as stochastic and
integrated out, there always exists a gap between our model and a canonical Bayesian one since
we reject a likelihood. We believe the connection is better justified under the general regularized
Bayesian inference framework [19] with a trivial non-informative likelihood.

Here we use the same Gaussian-Wishart prior over the latent factor matrix V as well as its
hyper-parameters µ and Ω, thus yielding a doubly augmented problem for binary data as

min
p(ν,Z,µ,Ω,V )

KL(p(ν, Z, µ,Ω, V )‖p0(ν, Z, µ,Ω, V )) +
∑

ij∈I
h`
(
YijEp[ZiV >j ]

)
, (17)

where we’ve omitted the regularization constant C and set p0(ν, Z, µ,Ω, V ) to be factorized as
p0(ν)p0(Z|ν)p0(µ,Ω)p0(V |µ,Ω), with ν and Z enjoying the same priors as in iPM3F and

(µ,Ω) ∼ GW(µ0, β0,W0, τ0) = N (µ|µ0, (β0Ω)−1)W(Ω|W0, τ0),

Vj |µ,Ω ∼ N (Vj |µ,Ω−1) i.i.d. for j = 1, . . . ,M .
And note that exactly the same process applies as well to the full model for ordinal ratings.

4 Learning and inference under truncated mean-field assumptions

Now, we briefly discuss how to perform learning and inference in iPM3F. For iBPM3F, similar
procedures are applicable. We defer all the details to Appendix D for saving space. Specifi-
cally, we introduce a simple variational inference method to approximate the optimal posterior,
which turns out to perform well in practice. We make the following truncated mean-field assumption

p(ν, Z, V ) = p(ν)p(Z)p(V ) =

K∏

k=1

p(νk) ·
N∏

i=1

K∏

k=1

p(Zik) · p(V ), (18)

where K is the truncation level and

νk ∼ Beta(γk1, γk2) i.i.d. for k = 1, . . . ,K, (19)
Zik ∼ Bernoulli(ψik) i.i.d. for i = 1, . . . , N, k = 1, . . . ,K. (20)

Note that we make no further assumption on the functional form of p(V ) and that we factorize p(Z)
into element-wise i.i.d. p(Zik) and parameterize it with Bernoulli(ψik) merely out of the pursuit of
a simpler denotation for subsequent deduction. Actually it can be shown that p(Z) indeed enjoys all
these properties given the mildest truncated mean-field assumption p(ν, Z, V ) = p(ν)p(Z)p(V ).

For ordinal ratings, we make an additional mean-field assumption

p(ν, Z, V, θ) = p(ν, Z, V )p(θ), (21)

where p(ν, Z, V ) is treated exactly the same as for binary data and p(θ) is left in free forms.

One noteworthy point is that given p(Z), we may calculate the expectation of the posterior effective
dimensionality of the latent factor space as

Ep[K+] =

K∑

k=1

(
1−

N∏

i=1

(1− ψik)

)
. (22)

Then the problem can be solved using an iterative procedure that alternates between optimizing each
component at a time, as outlined below (We defer the details to Appendix D.):

Infer p(V ): The linear discriminant function and the isotropic Gaussian prior on V leads to an
isotropic Gaussian posterior p(V ) =

∏M
j=1N (Vj |Λj , σ2I) while the M mean vectors Λj can be

obtained via solving M independent binary SVMs
min
Λj

1

2σ2
‖Λj‖2 + C

∑

i|ij∈I
h`
(
YijΛjψ

>
i

)
. (23)
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Infer p(ν) and p(Z): Since ν is marginalized before exerting any influence in the loss term, its
update is independent of the loss and hence we adopt the same update rules as in [2]; The sub-
problem on p(Z) decomposes intoN independent convex optimization problems, one for each ψi as

min
ψi

K∑

k=1

(
EZ [log p(Zik)]− Eν,Z [log p0(Zik|ν)]

)
+ C

∑

j|ij∈I
h`
(
YijψiΛ

>
j

)
, (24)

where EZ [log p(Zik)] = ψik logψik+(1−ψik) log(1−ψik), Eν,Z [log p0(Zik|ν)] = ψik
∑k
j=1 Eν [log νj ]+

(1 − ψik)Eν [log(1 −∏k
j=1 νj)] and Eν [log νj ] = ψ(γk1) − ψ(γk1 + γk2), Eν [log(1 −∏k

j=1 νj)] ≥ Lνk,
where Lνk in turn is the multivariate lower bound as in [2]. We may use the similar subgradient
technique as in [19] to approximately solve for ψi. Here we introduce an alternative solution, which
is as efficient and guarantees convergence as iteration goes on. We update ψi via coordinate descent,
with each conditional optimal ψik sought by binary search. (See Appendix D.1.3 for details.)

Infer p(θ): p(θ) remains an isotropic Gaussian as p(θ) =
∏N
i=1

∏L−1
r=1 N (θir|%ir, ς2) and the mean

%ir of each component is solution to the corresponding subproblem

min
%ir

1

2ς2
(%ir − ρr)2 + C

∑

j|ij∈I
h`
(
T rij(%ir − ψiΛ>j )

)
, (25)

to which the binary search solver for each ψik also applies. Note that as ς → +∞, the Gaussian
distribution regresses to a uniform distribution and problem (25) reduces accordingly to the corre-
sponding conditional subproblem for θ in the original M3F (Appendix B.3).

5 Experiments and discussions

We conduct experiments on the MovieLens 1M and EachMovie data sets, and compare our results
with fast M3F [11] and two probabilistic matrix factorization methods, PMF [13] and BPMF [12].

Data sets: The MovieLens data set contains 1,000,209 anonymous ratings (ranging from 1 to 5) of
3,952 movies made by 6,040 users, among which 3,706 movies are actually rated and every user
has at least 20 ratings. The EachMovie data set contains 2,811,983 ratings of 1,628 movies made by
72,916 users, among which 1,623 movies are actually rated and 36,656 users has at least 20 ratings.
As in [7, 11], we discarded users with fewer than 20 ratings, leaving us with 2,579,985 ratings.
There are 6 possible rating values, {0, 0.2, . . . , 1} and we mapped them to {1, 2, . . . , 6}.
Protocol: As in [7, 11], we test our method in a pure collaborative prediction setting, neglecting any
external information other than the user-item-rating triplets in the data sets. We adopt as well the
all-but-one protocol to partition the data set into training set and test set, that is to randomly withhold
one of the observed ratings from each user into test set and use the rest as training set. Validation set,
when needed, is constructed likewise from the constructed training set. Also as described in [7], we
consider both weak and strong generalization. For weak, the training ratings for all users are always
available, so a single-stage training process will suffice; while for strong, training is first carried out
on a subset of users, and then keeping the learned latent factor matrix V fixed, we train the model a
second time on the other users for their user profiles (coefficients Z and thresholds θ) and perform
prediction on these users only. We partition the users accordingly as in [7, 11], namely 5,000 and
1,040 users for weak and strong respectively in MovieLens, and 30,000 and 6,565 in EachMovie.
We repeat the random partition thrice. We compute Normalized Mean Absolute Error (NMAE) as
the error measure and report the averaged performance.4

Implementation details: We perform cross-validation to choose the best regularization constant C
for iPM3F as well as to guide early-stopping during the learning process. The candidate C values
are the same 11 values which are log-evenly distributed between 0.13/4 and 0.12 as in [11]. We
set the truncation level K = 100 (same for M3F and PMF models), α = 3, σ = 1, ς = 1.5`;
ρ1, . . . , ρL−1 are set to be symmetric with respect to 0, with a step-size of 2`; We set the margin
parameter ` = 9. Although M3F is invariant to ` (Appendix B.4), we find that setting ` = 9 achieved
a good balance between performance and training time (Figure 1). The difference is largely believed
to attribute to the uniform convergence standard we used when solving SVM subproblems. Finally,
for iBPM3F, we find that although removing C can achieve competitive results with iPM3F, keeping
C will produce even better performance. Hence we learn iBPM3F using the selected C for iPM3F.
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Table 1: NMAE performance of different models on MovieLens and EachMovie.

MovieLens EachMovie
Algorithm weak strong weak strong
M3F [11] .4156± .0037 .4203± .0138 .4397± .0006 .4341± .0025
PMF [13] .4332± .0033 .4413± .0074 .4466± .0016 .4579± .0016
BPMF [12] .4235± .0023 .4450± .0085 .4352± .0014 .4445± .0005
M3F∗ .4176± .0016 .4227± .0072 .4348± .0023 .4301± .0034
iPM3F .4031± .0030 .4135± .0109 .4211± .0019 .4224± .0051
iBPM3F .4050± .0029 .4089± .0146 .4268± .0029 .4403± .0040

5.1 Experimental results

Table 1 presents the NMAE performance of different models, where the performance of M3F is
cited from the corresponding paper [11] and represents the state-of-the-art. We observe that iPM3F
significantly outperforms M3F, PMF and BPMF in terms of the NMAE error measure on both data
sets for both settings. Moreover, we find that the fully Bayesian formulation of iPM3F achieves
comparable performances in most cases as iPM3F and that our coordinate descent algorithm for
M3F (M3F∗) performs quite similar to the original gradient descent algorithm for M3F.

In summary, the effect of endowing M3F models with a probabilistic formulation is intriguing in
that not only the performance of the model is largely improved but with the help of Bayesian non-
parametric techniques, the effort of selecting the number of latent factors is saved as well.

Table 2: NMAE on the purged EachMovie.

Algorithm weak strong
M3F [11] .4009± .0012 .4028± .0064
PMF [13] .4153± .0016 .4329± .0059
BPMF [12] .4021± .0011 .4119± .0062
M3F∗ .4059± .0012 .4095± .0052
iPM3F .3954± .0026 .3977± .0034
iBPM3F .3982± .0021 .4026± .0067

Another observation from Table 1 is that in gener-
al almost all models perform worse on EachMovie
than on MovieLens. A closer investigation finds that
the EachMovie data set has a special rating. When
a user has rated an item as zero star, he might either
express a genuine dislike or, when the weight of the
rating is less than 1, indicate that he never plans to
see that movie since it just “sounds awful”. Ideally
we should treat such a declaration as less authorita-
tive than a regular rating of zero star and hence omit it from the data set. We have tried this setting
by removing these special ratings.5 Table 2 presents the NMAE results of different models. Again,
the coordinate descent M3F performs comparably with fast M3F; iPM3F performs better than all the
other methods; And iBPM3F performs comparably with iPM3F.
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Figure 1: Influence of ` on M3F.
We fixed ` = 9 across the exper-
iments.
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5.2 Closer analysis of iPM3F

The posterior dimensionality: As indicated in Eq. (22), we may calculate the expectation of the
effective dimensionality K+ of the latent factor space to roughly have a sense of how the iPM3F
model automatically chooses the latent dimensionality. Since we take α = 3 in the IBP prior (15)
andN ∼ 104, the expected prior dimensionality αHN is about 30. We find that when the truncation
level K is set small, e.g., 60 or 80, the expected posterior dimensionality very quickly saturates,

4Note that M3F models output discretized ordinal ratings while PMF models output real-valued ratings.
5After discarding users with less than 20 normal ratings, we are left with 35,281 users and 2,315,060 ratings.
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Table 3: Performance of iPM3F with and without probabilistic treatment of θ

Algorithm MovieLens EachMovie pEachMovie
w/ prob. .4031± .0030 .4211± .0019 .3954± .0026
w/o prob. .4056± .0043 .4256± .0011 .4026± .0023
margin .0024± .0013 .0045± .0016 .0072± .0045

often within the first few iterations; While for sufficiently large Ks, e.g., 150 or 200, iPM3F tends to
output a sparse Z of expected dimensionality around 135 or 110 respectively. (For each truncation
level, we rerun our model and perform cross-validation to select the best regularization constant C.)
This interesting observation verifies our model’s capability of automatic model complexity control.

Stability: As Figure 2 and 3 shows, iPM3F performs quite stably against 3 different randomly par-
titioned subsets. iBPM3F expresses a similar trait, but the test performance does not keep dropping
with the decreasing of the objective value. Therefore we use a validation set to guide the early-
stopping during the learning process, terminating when validation error starts to rebound.

Treating thresholds θ: When predicting ordinal ratings, the introduced thresholds θ are very im-
portant since they underpin the large-margin principle of max-margin matrix factorization models.
Nevertheless without a proper probabilistic treatment, the subproblems on thresholds (25) are not
strictly convex, very often giving rise to a section of candidate thresholds that are “equally optimal”
for the solution. Under our probabilistic model however, we can easily get rid of this non-strict
convexity by introducing for them a Gaussian prior as stated above in section 3.3. We compare per-
formances of iPM3F both with and without the probabilistic treatment of θ and as shown in Table 3,
the improvement is outstanding.

Table 4: Running time of different models.

Algorithm MovieLens EachMovie Iters
M3F [11] ∼5h ∼15h 100
PMF [13] 8.7m 25m 50
BPMF [12] 19m 1h 50
M3F∗ 4h 10h 50
U , V 3.8h 9.5h
θ 125s 750s
iPM3F 4.6h 5.5h 50
V 4.3h 4.3h
ψ 18m 1h

Finally, Table 4 presents the running time of vari-
ous models on both EachMovie and MovieLens data
sets. For M3F, the original paper [11] reported about
5h on MovieLens with a standard 3.06Ghz Pentium
4 CPU and about 15h on EachMovie, which are fair-
ly acceptable for factorizing a matrix with millions
of entries. Our current implementations of M3F and
iPM3F consume about 4.5h and 10h on MovieLens
and EachMovie respectively with a 3.00Ghz Core i5
CPU. A closer investigation discovers that most of
the running time is spent on learning U (or Z) and
V in PM3F models, which breaks down into a set of
SVM optimization problems that are learned by SVMstruct. More efficient SVM solvers can be im-
mediately applied to further improve the efficiency. Furthermore, the blockwise coordinate descent
algorithm can naturally be parallelized, since the sub-problems of learning different Ui (or Vj) are
not coupled. We leave this improvement in future work.

6 Conclusions

We’ve presented an infinite probabilistic max-margin matrix factorization method, which utilizes the
advantages of nonparametric Bayesian techniques to bypass the model selection problem of max-
margin matrix factorization methods. We’ve also developed efficient blockwise coordinate descent
algorithms for variational inference and performed extensive evaluation on two large benchmark
data sets. Empirical results demonstrate appealing performance.
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