
Constant-Time Loading of Shallow 1-Dimensional 
Networks 

Stephen Judd 
Siemens Corporate Research, 

755 College Rd. E., 
Princeton, NJ 08540 

judd@learning.siemens.com 

Abstract 

The complexity of learning in shallow I-Dimensional neural networks has 
been shown elsewhere to be linear in the size of the network. However, 
when the network has a huge number of units (as cortex has) even linear 
time might be unacceptable. Furthermore, the algorithm that was given to 
achieve this time was based on a single serial processor and was biologically 
implausible. 
In this work we consider the more natural parallel model of processing 
and demonstrate an expected-time complexity that is constant (i.e. in
dependent of the size of the network). This holds even when inter-node 
communication channels are short and local, thus adhering to more bio
logical and VLSI constraints. 

1 Introduction 

Shallow neural networks are defined in [J ud90]; the definition effectively limits the 
depth of networks while allowing the width to grow arbitrarily, and it is used as a 
model of neurological tissue like cortex where neurons are arranged in arrays tens 
of millions of neurons wide but only tens of neurons deep. Figure I exemplifies 
a family of networks which are not only shallow but "I-dimensional" as well-we 
allow the network to be extended as far as one liked in width (i.e. to the right) by 
repeating the design segments shown. The question we address is how learning time 
scales with the width. In [Jud88], it was proved that the worst case time complexity 

863 



864 Judd 

of training this family is linear in the width. But the proof involved an algorithm 
that was biologically very implausible and it is this objection that will be somewhat 
redressed in this paper. 

The problem with the given algorithm is that it operates only a monolithic serial 
computer; the single-CPU model of computing has no overt constraints on commu
nication capacities and therefore is too liberal a model to be relevant to our neural 
machinery. Furthermore, the algorithm reveals very little about how to do the 
processing in a parallel and distributed fashion. In this paper we alter the model 
of computing to attain a degree of biological plausibility. We allow a linear num
ber processors and put explicit constraints on the time required to communicate 
between processors. Both of these changes make the model much more biological 
(and also closer to the connectionist sty Ie of processing). 

This change alone, however, does not alter the time complexity-the worst case 
training time is still linear. But when we change the complexity question being 
asked, a different answer is obtained. We define a class of tasks (viz. training data) 
that are drawn at random and then ask for the expected time to load these tasks, 
rather than the worst-case time. This alteration makes the question much more 
environmentally relevant. It also leads us into a different domain of algorithms and 
yields fast loading times. 

2 Shallow I-D Loading 

2.1 Loading 

A family of the example shallow I-dimensional architectures that we shall examine 
is characterized solely by an integer, d, which defines the depth of each architecture 
in the family. An example is shown in figure 1 for d = 3. The example also happens 
to have a fixed fan-in of 2 and a very regular structure, but this is not essential. A 
member of the family is specified by giving the width n, which we will take to be 
the number of output nodes. 

A task is a set of pairs of binary vectors, each specifying an stimulus to a net and 
its desired response. A random task of size t is a set of t pairs of independently 
drawn random strings; there is no guarantee it is a function. 

Our primary question has to do with the following problem, which is parameterized 
by some fixed depth d, and by a node function set (which is the collection of different 
transfer functions that a node can be tuned to perform): 

Shallow 1-D Loading: 
Instance: An integer n, and a task. 
Objective: Find a function (from the node function set) for each node in the 
network in the shallow I-D architecture defined by d and n such that the 
resulting circuit maps all the stimuli in the task to their associated responses. 



Constant-Time Loading of Shallow I-Dimensional Networks 865 

Figure 1: A Example Shallow 1-D Architecture 

2.2 Model of Computation 

Our machine model for solving this question is the following: For an instance of 
shallow 1-D loading of width n, we allow n processors. Each one has access to 
a piece of the task, namely processor i has access to bits i through i + d of each 
stimulus, and to bit i of each response. Each processor i has a communication link 
only to its two neighbours, namely processors i-I and i + 1. (The first and nth 
processors have only one neighbour.) It takes one time step to communicate a fixed 
amount of data between neighbours. There is no charge for computation, but this is 
not an unreasonable cheat because we can show that a matrix multiply is sufficient 
for this problem, and the size of the matrix is a function only of d (which is fixed). 

This definition accepts the usual connectionist ideal of having the processor closely 
identified with the network nodes for which it is "finding the weights", and data 
available at the processor is restricted to the same "local" data that connectionist 
machines have. 

This sort of computation sets the stage for a complexity question, 

2.3 Question and Approach 

We wish to demonstrate that 

Claim 1 This parallel machine solves shallow J-D loading where each processor is 
finished in constant expected time The constant is dependent on the depth of the 
architecture and on the size of the task, but not on the width. The expectation is 
over the tasks. 



866 Judd 

For simplicity we shall focus on one particular processor-the one at the leftmost 
end-and we shall further restrict our at tention to finding a node function for one 
particular node. 

To operate in parallel, it is necessary and sufficient for each processor to make its 
local decisions in a "safe" manner-that is, it must make choices for its nodes in 
such a way as to facilitate a global solution. Constant-time loading precludes being 
able to see all the data; and if only local data is accessible to a processor, then 
its plight is essentially to find an assignment that is compatible with all nonlocal 
satisfying assignments. 

Theorem 2 The expected communication complexity of finding a "safe" node func
tion assignment for a particular node in a shallow l-D architecture is a constant 
dependent on d and t, but not on n. 

If decisions about assignments to single nodes can be made easily and essentially 
without having to communicate with most of the network, then the induced parti
tioning of the problem admits of fast parallel computation. There are some com
plications to the details because all these decisions must be made in a coordinated 
fashion, but we omit these details here and claim they are secondary issues that do 
not affect the gross complexity measurements. 

The proof of the theorem comes in two pieces. First, we define a computational 
problem called path finding and the graph-theoretic notion of domination which 
is its fundamental core. Then we argue that the loading problem can be reduced 
to path finding in constant parallel time and give an upper bound for determining 
domination. 

3 Path Finding 

The following problem is parameterized by an integer I<, which is fixed. 

Path finding : 
Instance: An integer n defining the number of parts in a partite graph, and a 
series of I<xI< adjacency matrices, M I , M 2 , ••. Mn - I . Mj indicates connections 
between the K nodes of part i and the I< nodes of part i + 1. 
Objective: Find a path of n nodes, one from each part of the n-partite graph. 

Define Xh to be the binary matrix representing connectivity between the first part of 
the graph and the ith part: Xl = MI and Xh(j, k) = 1 iff 3m such that Xh(j, m) = 1 
and Mh(m, k) = 1. We say "i includes j at h" if every bit in the ith row of Xh is 1 
whenever the corresponding bit in the jth row of X h is 1. We say "i dominates at 
h" or "i is a dominator' if for all rows j, i includes j at h. 

Lemma 3 Before an algorithm can select a node i from the first part of the graph 
to be on the path, it is necessary and sufficient for i to have been proven to be a 
dominator at some h. 0 



Constant-Time Loading of Shallow l-Dimensional Networks 867 

The minimum h required to prove domination stands as our measure of "commu
nication complexity" . 

Lemma 4 Shallow J-D Loading can be reduced to path finding in constant parallel 
time. 

Proof: Each output node in a shallow architecture has a set of nodes leading into it 
called a support cone (or "receptive field"), and the collection of functions assigned 
to those nodes will determine whether or not the output bit is correct in each 
response. Nodes A,B,C,D,E,G in Figure 1 are the support cone for the first output 
node (node C), and D,E,F,G,H,J are the cone for the second. Construct each part 
of the graph as a set of points each corresponding to an assignment over the whole 
support cone that makes its output bit always correct. This can be done for each 
cone ih parallel, and since the depth (and the fan-in) is fixed, the set of all possible 
assignments for the support cone can be enumerated in constant time. Now insert 
edges between adjacent parts wherever two points correspond to assignments that 
are mutually compatible. (Note that since the support cones overlap one another, 
we need to ensure that assignments are consistent with each other.) This also can 
be done in constant parallel time. We call this construction a compatibility graph. 

A solution to the loading problem corresponds exactly to a path in the compatibility 
graph. 0 

A dominator in this path-finding graph is exactly what was meant above by a "safe" 
assignment in the loading problem. 

4 Proof of Theorem 

Since it is possible that there is no assignments to certain cones that correctly 
map the stimuli it is trivial to prove the theorem, but as a practical matter we are 
interested in the case where the architecture is actually capable of performing the 
task. We will prove the theorem using a somewhat more satisfying event. 

Proof of theorem 2: For each support cone there is 1 output bit per response and 
there are t such responses. Given the way they are generated, these responses could 
all be the same with probability .5t - 1 . The probability of two adjacent cones both 
having to perform such a constant mapping is .52(t-l). 

Imagine the labelling in Figure 1 to be such that there were many support cones 
to the left (and right) of the piece shown. Any path through the left side of the 
compatibility graph that arrived at some point in the part for the cone to the left 
of C would imply an assignment for nodes A, B, and D. Any path through the 
right side of the compatibility graph that arrived at some point in the part for the 
cone of I would imply an assignment for nodes G, H, and J. If cones C and F were 
both required to merely perform constant mappings, then any and all assignments 
to A, B, and D would be compatible with any and all assignments to G, H, and J 
(because nodes C and F could be assigned constant functions themselves, thereby 
making the others irrelevant). This insures that any point on a path to the left will 
dominate at the part for I. 



868 Judd 

Thus 22(t-l) (the inverse of the probability of this happening) is an upper bound 
on the domination distance, i.e. the communication complexity, i.e. the loading 
time. 0 

More accurately, the complexity is min(c(d, t), f(t), n), where c and f are some 
unknown functions. But the operative term here is usually c because d is unlikely 
to get so large as to bring f into play (and of course n is unbounded). 

The analysis in the proof is sufficient, but it is a far cry from complete. The actual 
Markovian process in the sequence of X's is much richer; there are so many events 
in the compatibility graph that cause domination to occur that is takes a lot of 
careful effort to construct a task that will avoid it! 

5 Measuring the Constants 

Unfortunately, the very complications that give rise to the pleasant robustness of 
the domination event also make it fiendishly difficult to analyze quantitatively. So 
to get estimates for the actual constants involved we ran Monte Carlo experiments. 

We ran experiments for 4 different cases. The first experiment was to measure 
the distance one would have to explore before finding a dominating assignment for 
the node labeled A in figure 1. The node function set used was the set of linearly 
separable functions. In all experiments, if domination occurred for the degenerate 
reason that there were no solutions (paths) at all, then that datum was thrown out 
and the run was restarted with a different seed. 

Figure 2 reports the constants for the four cases. There is one curve for each 
experiment. The abscissa represents t, the size of the task. The ordinate is the 
number of support cones that must be consulted before domination can be expected 
to occur. All points given are the average of at least 500 trials. Since t is an integer 
the data should not have been interpolated between points, but they are easier to 
see as connected lines. The solid line (labeled LSA) is for the case just described. 
It has a bell shape, reflecting three facts: 

• when the task is very small almost every choice of node function for one node 
is compatible with choices for the neighbouring nodes. 

• when the task is very large, there so many constraints on what a node must 
compute that it is easy to resolve what that should be without going far afield. 

• when the task is intermediate-sized, the problem is harder. 

Note the very low distances involved-even the peak of the curve is well below 2, 
so nowhere would you expect to have to pass data more than 2 support cones away. 
Although this worst-expected-case would surely be larger for deeper nets, current 
work is attempting to see how badly this would scale with depth (larger d). 

The curve labeled LUA is for the case where all Boolean functions are used as the 
node function set. Note that it is significantly higher in the region 6 < t < 12. The 
implication is that although the node function set being used here is a superset of 
the linearly separable functions, it takes more computation at loading time to be 
able to exploit that extra power. 






