NIPS Proceedingsβ

Factoring nonnegative matrices with linear programs

Part of: Advances in Neural Information Processing Systems 25 (NIPS 2012)

[PDF] [BibTeX]



This paper describes a new approach for computing nonnegative matrix factorizations (NMFs) with linear programming. The key idea is a data-driven model for the factorization, in which the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C that satisfies X = CX and some linear constraints. The matrix C selects features, which are then used to compute a low-rank NMF of X. A theoretical analysis demonstrates that this approach has the same type of guarantees as the recent NMF algorithm of Arora et al.~(2012). In contrast with this earlier work, the proposed method has (1) better noise tolerance, (2) extends to more general noise models, and (3) leads to efficient, scalable algorithms. Experiments with synthetic and real datasets provide evidence that the new approach is also superior in practice. An optimized C++ implementation of the new algorithm can factor a multi-Gigabyte matrix in a matter of minutes.