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Abstract

Many practitioners of reinforcement learning problems have observed that often-
times the performance of the agent reaches very close to the optimal performance
even though the estimated (action-)value function is still far from the optimal one.
The goal of this paper is to explain and formalize this phenomenon by introducing
the concept of the action-gap regularity. As a typical result, we prove that for an
agent following the greedy policy π̂ with respect to an action-value function Q̂, the
performance loss E

[
V ∗(X)− V π̂(X)

]
is upper bounded by O(‖Q̂ − Q∗‖1+ζ

∞ ),
in which ζ ≥ 0 is the parameter quantifying the action-gap regularity. For ζ > 0,
our results indicate smaller performance loss compared to what previous analyses
had suggested. Finally, we show how this regularity affects the performance of
the family of approximate value iteration algorithms.

1 Introduction

This paper introduces a new type of regularity in the reinforcement learning (RL) and planning
problems with finite-action spaces that suggests that the convergence rate of the performance loss to
zero is faster than what previous analyses had indicated. The effect of this regularity, which we call
the action-gap regularity, is that oftentimes the performance of the RL agent reaches very close to
the optimal performance (e.g., it always solves the mountain-car problem with the optimal number
of steps) even though the estimated action-value function is still far from the optimal one.

Figure 1 illustrates the effect of this regularity in a simple problem. We use value iteration to
solve a stochastic 1D chain walk problem (slight modification of the example in Section 9.1 of [1]).
The behavior of the supremum of the difference between the estimate after k iterations and the
optimal action-value function is O(γk), in which 0 ≤ γ < 1 is the discount factor (notations shall
be introduced in Section 2). The current theoretical results suggest that the convergence of the
performance loss, which is defined as the average difference between the value of the optimal policy
and the value of the greedy policy w.r.t. (with respect to) the estimated action-value function, should
have the same O(γk) behavior (cf. Proposition 6.1 of Bertsekas and Tsitsiklis [2]). However, the
behavior of the performance loss is often considerably faster, e.g., it is approximately O(γ1.85k) in
this example.

To gain a better understanding of the action-gap regularity, focus on a single state and suppose that
there are only two actions available. When the estimated action-value function has a large error, the
greedy policy w.r.t. it can possibly choose the suboptimal action. However, when the error becomes
smaller than the (half of the) gap between the value of the optimal action and the other one, the
selected greedy action is the optimal action. After passing this threshold, the size of the error in
the estimate of the action-value function in that state does not have any effect on the quality of the
selected action. The larger the gap is, the more inaccurate the estimate can be while the selected
greedy action is the optimal one. On the other hand, if the estimated action-value function does not
suggest a correct ordering of actions but the gap is negligibly small, the performance loss of not
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Figure 1: Comparison of the action-value estimation error ‖Q̂ − Q∗‖∞ and the performance loss
‖V ∗ − V π̂‖1 (π̂ is the greedy policy with respect to Q̂) at different iterations of the value iteration
algorithm. The rate of decrease for the performance loss is considerably faster than that of the
estimation error. The problem is a 1D stochastic chain walk with 500 states and γ = 0.95.

choosing the optimal action is small as well. The presence of this gap in the optimal action-value
function is what we call the action-gap regularity of the problem and the described behavior is called
the action-gap phenomenon.

Action-gap regularity is similar to the low-noise (or margin) condition in the classification literature.
The low-noise condition is the assumption that the conditional probability of the class label given
input is “far” from the critical decision point. If this condition holds, “fast” convergence rate is
obtainable as was shown by Mammen and Tsybakov [3], Tsybakov [4], Audibert and Tsybakov
[5]. The low-noise condition is believed to be one reason that many high-dimensional classification
problems can be solved with efficient sample complexity (cf. Rinaldo and Wasserman [6]). We
borrow techniques developed in the classification literature, in particular by Audibert and Tsybakov
[5], in our analysis.

It is notable that there have been some works that used classification algorithms to solve reinforce-
ment learning (e.g., Lagoudakis and Parr [7], Lazaric et al. [8]) or the related problem of appren-
ticeship learning (e.g., Syed and Schapire [9]). Nevertheless, the connection of this work to the
classification literature is only by borrowing theoretical ideas from that literature and not in using
any particular algorithm. The focus of this work is indeed on the value-based approaches, though
one might expect that similar behavior can be observed in classification-based approaches as well.

In the rest of this paper, we formalize the action-gap phenomenon and prove that whenever the MDP
has a favorable action-gap regularity, fast convergence rate is achievable. Theorem 1 upper bounds
the performance loss of the greedy policy w.r.t. the estimated action-value function by a function of
the Lp-norm of the difference between the estimated action-value function and the optimal one. Our
result complements previous theoretical analyses of RL/Planning problems such as those by Antos
et al. [10], Munos and Szepesvári [11], Farahmand et al. [12, 13], Maillard et al. [14], who mainly
focused on the quality of the (action-)value function estimate and ignored the action-gap regularity.
This synergy provides a clearer picture of what makes an RL/Planning problem easy or difficult.
Finally as an example of Theorem 1, we address the question of how the errors caused at each
iteration of the Approximate Value Iteration (AVI) algorithm affect the quality of the outcome policy
and show that the AVI procedure benefits from the action-gap regularity of the problem (Theorem 2).

2 Notations

In this section, we provide a brief summary of some of the concepts and definitions from the theory
of MDPs and RL. For more information, the reader is referred to Bertsekas and Tsitsiklis [2], Sutton
and Barto [15], Szepesvári [16].
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For a space Ω, with σ-algebra σΩ, we defineM(Ω) as the set of all probability measures over σΩ.
B(Ω) denotes the space of bounded measurable functions w.r.t. (with respect to) σΩ and B(Ω, L)
denotes the subset of B(Ω) with bound 0 < L <∞.

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X ×A →M(X ) is the transition probability kernel,R : X ×A → R
is the reward distribution, and 0 ≤ γ < 1 is a discount factor. We denote r(x, a) = E [R(·|x, a)].

A measurable mapping π : X → A is called a deterministic Markov stationary policy, or just a policy
in short. An agent’s following a policy π in an MDP means that at each time step At = π(Xt).

A policy π induces two transition probability kernels Pπ : X → M(X ) and Pπ : X × A →
M(X × A). For a measurable subset A of X and a measurable subset B of X × A, we define
(Pπ)(A|x) ,

∫
P (dy|x, π(x))I{y∈A} and (Pπ)(B|x, a) ,

∫
P (dy|x, a)I{(y,π(y))∈B}. Them-step

transition probability kernel (Pπ)m : X×A →M(X×A) form = 2, 3, · · · are inductively defined
as (Pπ)m(B|x, a) ,

∫
X P (dy|x, a)(Pπ)m−1(B|y, π(y)) (similarly for (Pπ)m : X →M(X )).

Given a transition probability kernel P : X → M(X ), define the right-linear operator P · :

B(X ) → B(X ) by (PV )(x) ,
∫
X P (dy|x)V (y). For a probability measure ρ ∈ M(X )

and a measurable subset A of X , define the left-linear operators ·P : M(X ) → M(X ) by
(ρP )(A) =

∫
ρ(dx)P (dy|x)I{y∈A}. A typical choice of P is (Pπ)m : M(X ) → M(X ). These

operators for P : X ×A →M(X ×A) are defined similarly.

The value function V π and and the action-value function Qπ of a policy π are defined as follows:
Let (Rt; t ≥ 1) be the sequence of rewards when the Markov chain is started from state X1 (state-
action (X1, A1) for the action-value function) drawn from a positive probability distribution over
X (X × A) and the agent follows the policy π. Then V π(x) , E

[∑∞
t=1 γ

t−1Rt

∣∣∣X1 = x
]

and

Qπ(x, a) , E
[∑∞

t=1 γ
t−1Rt

∣∣∣X1 = x,A1 = a
]
.

For a discounted MDP, we define the optimal value and optimal action-value functions by V ∗(x) =
supπ V

π(x) for all states x ∈ X andQ∗(x, a) = supπ Q
π(x, a) for all state-actions (x, a) ∈ X×A.

We say that a policy π∗ is optimal if it achieves the best values in every state, i.e., if V π
∗

= V ∗.
We say that a policy π is greedy w.r.t. an action-value function Q and write π = π̂(·;Q), if π(x) =
argmaxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers, a maximizer is chosen
in an arbitrary deterministic manner). Greedy policies are important because a greedy policy w.r.t.
the optimal action-value function Q∗ is an optimal policy.

For a fixed policy π, the Bellman operators Tπ : B(X )→ B(X ) and Tπ : B(X ×A)→ B(X ×A)

(for the action-value functions) are defined as (TπV )(x) , r(x, π(x)) + γ
∫
X V (y)P (dy|x, π(x))

and (TπQ)(x, a) , r(x, a) + γ
∫
X Q(y, π(y))P (dy|x, a). The fixed point of the Bellman operator

is the (action-)value function of the policy π, i.e., TπQπ = Qπ and TπV π = V π . Similarly, the
Bellman optimality operators T ∗ : B(X ) → B(X ) and T ∗ : B(X × A) → B(X × A) (for the
action-value functions) are defined as (T ∗V )(x) , maxa

{
r(x, a) + γ

∫
R×X V (y)P (dr, dy|x, a)

}
and (T ∗Q)(x, a) , r(x, a) + γ

∫
R×X maxa′ Q(y, a′)P (dr, dy|x, a). Again, these operators enjoy

a fixed-point property similar to that of the Bellman operators: T ∗Q∗ = Q∗ and T ∗V ∗ = V ∗.

For a probability measure ρ ∈M(X ), and a measurable function V ∈ B(X ), we define the Lp(ρ)-

norm (1 ≤ p < ∞) of V as ‖V ‖p,ρ ,
[∫
X |V (x)|p dρ(x)

]1/p
. The L∞(X )-norm is defined as

‖V ‖∞ , supx∈X |V (x)|. For ρ ∈M(X ×A) andQ ∈ B(X ×A), we define ‖Q‖p,ρ (1 ≤ p <∞)

by ‖Q‖p,ρ ,
[

1
|A|
∑|A|
a=1 ‖Q(·, a)‖pp,ρ

]1/p
and ‖Q‖∞ , sup(x,a)∈X×A |Q(x, a)|.

3 Action-Gap Theorem

In this section, we present the action-gap theorem for an MDP (X ,A, P,R, γ). To simplify the
analysis, we assume that the number of actions |A| is only 2. We denote ρ∗ ∈M(X ) as the station-
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Figure 2: The action-gap function gQ∗(x) and the relative ordering of the optimal and the estimated
action-value functions for a single state x. Depending on the ordering of the estimates, the greedy
action is the same as (X) or different from (X) the optimal action. This figure does not show all
possible configurations.

ary distribution induced by π∗, and we let ρ ∈ M(X ) be a user-specified evaluation distribution.
This distribution indicates the relative importance of regions of the state space to the user.

Suppose that algorithm A receives a dataset Dn = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)}

(with Ri is being drawn fromR(·|Xt, At) and X ′t is being drawn from P (·|Xt, At)) and outputs Q̂
as an estimate of the optimal action-value function, i.e., Q̂← A(Dn). The exact nature of this algo-
rithm is not important and it can be any online or offline, batch or incremental algorithms of choice
such as Q-learning, SARSA [15], and their variants [17], LSPI [1], LARS-TD [18] in a policy it-
eration procedure, REG-LSPI [13], various Fitted Q-Iterations algorithms [19, 20, 12], or Linear
Programming-based approaches [21, 22]. The only relevant aspect of Q̂ is how well it approximates
Q∗. We quantify the quality of the approximation by the Lp-norm ‖Q̂−Q∗‖p,ρ∗ (p ∈ [1,∞]).

The performance loss (or regret) of a policy π is the expected difference between the value of the
optimal policy π∗ to the value of π when the initial state distribution is selected according to ρ, i.e.,

Loss(π; ρ) ,
∫
X

(V ∗(x)− V π(x)) dρ(x). (1)

The value of Loss(π̂; ρ), in which π̂ is the greedy policy w.r.t. Q̂, is the main quantity of interest
and indicates how much worse the agent following policy π̂ would perform, in average, compared
to the optimal one. The choice of ρ enables the user to specify the relative importance of regions in
the state space.

We define the action(-value)-gap function gQ∗ : X → R as

gQ∗(x) , |Q∗(x, 1)−Q∗(x, 2)| .

This gap is shown in Figure 2. The following assumption quantifies the action-gap regularity.

Assumption A1 (Action-Gap). For a fixed MDP (X ,A, P,R, γ) with |A| = 2, there exist con-
stants cg > 0 and ζ ≥ 0 such that for all t > 0, we have

Pρ∗ (0 < gQ∗(X) ≤ t) ,
∫
X
I{0 < gQ∗(x) ≤ t} dρ∗(x) ≤ cg tζ .

The value of ζ controls the distribution of the action-gap gQ∗(X). A large value of ζ indicates that
the probability that Q(X, 1) being very close to Q(X, 2) is small and vice versa. The smallness of
this probability implies that the estimated action-value function Q̂ might be rather inaccurate in a
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Figure 3: The probability distribution Pρ∗ (0 < gQ∗(X) ≤ t) for a 1D stochastic chain walk with
500 states and γ = 0.95. Here the probability of the action-gap being close to zero is small.

large subset of the state space (measured according to ρ∗) but its corresponding greedy policy would
still be the same as the optimal one. The case of ζ = 0 and cg = 1 is equivalent to not having
any assumption on the action-gap. This assumption is inspired by the low-noise condition in the
classification literature [5]. As an example of a typical behavior of an action-gap function, Figure 3
depicts Pρ∗ (0 < gQ∗(X) ≤ t) for the same 1D stochastic chain walk problem as mentioned in the
Introduction. It is seen that the probability that the action-gap function gQ∗ being close to zero is
very small. Note that the specific polynomial form of the upper bound in Assumption A1 is only a
modeling assumption that captures the essence of the action-gap regularity without trying to be too
general to lead to unnecessarily complicated analyses.

As a result of the dynamical nature of MDP, the performance loss depends not only on the choice
of ρ and ρ∗, but also on the transition probability kernel P . To analyze this dependence, we define
a concentrability coefficient and use a change of measure argument similar to the work of Munos
[23, 24], Antos et al. [10].

Definition 1 (Concentrability of the Future-State Distribution). Given ρ, ρ∗ ∈ M(X ), a policy π,
and an integer m ≥ 0, let ρ(Pπ)m ∈ M(X ) denote the future-state distribution obtained when
the first state is distributed according to ρ and we then follow the policy π for m steps. Denote the
supremum of the Radon-Nikodym derivative of ρ(Pπ)m w.r.t. ρ∗ by c(m;π), i.e.,

c(m;π) ,

∥∥∥∥d(ρ(Pπ)m)

dρ∗

∥∥∥∥
∞
.

If ρ(Pπ)m is not absolutely continuous w.r.t. ρ∗, we set c(m;π) = ∞. The concentrability of the
future-state distribution coefficient is defined as

C(ρ, ρ∗) , sup
π

∑
m≥0

γmc(m;π).

The following theorem upper bounds the performance loss Loss(π̂; ρ) as a function of ‖Q∗−Q̂‖p,ρ∗ ,
the action-gap distribution, and the concentrability coefficient.

Theorem 1. Consider an MDP (X ,A, P,R, γ) with |A| = 2 and an estimate Q̂ of the optimal
action-value function. Let Assumption A1 hold and C(ρ, ρ∗) < ∞. Denote π̂ as the greedy policy
w.r.t. Q̂. We then have

Loss(π̂; ρ) ≤


21+ζ cg C(ρ, ρ∗)

∥∥∥Q̂−Q∗∥∥∥1+ζ

∞
,

21+
p(1+ζ)
p+ζ c

p−1
p+ζ
g C(ρ, ρ∗)

∥∥∥Q̂−Q∗∥∥∥ p(1+ζ)p+ζ

p,ρ∗
. (1 ≤ p <∞)
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Proof. Let function F : X → R be defined as F (x) = V ∗(x) − V π̂(x) = Qπ
∗
(x, π∗(x)) −

Qπ̂(x, π̂(x)) for any x ∈ X . Note that Loss(π̂; ρ) = ρF . Decompose F (x) as

F (x) =
(
Qπ
∗
(x, π∗(x))−Qπ

∗
(x, π̂(x))

)
+
(
Qπ
∗
(x, π̂(x))−Qπ̂(x, π̂(x))

)
= F1(x) + F2(x).

We have

F2(x) =

[
r(x, π̂(x)) + γ

∫
X
P (dy|x, π̂(x))Qπ

∗
(y, π∗(y))

]
−[

r(x, π̂(x)) + γ

∫
X
P (dy|x, π̂(x))Qπ̂(y, π̂(y))

]
= γP π̂(·|x)F (·).

Therefore, F = (I− γP π̂)−1F1 =
∑
m≥0(γP π̂)mF1. Thus,

ρF =
∑
m≥0

ρ(γP π̂)mF1 =
∑
m≥0

γm
∫
X

(
ρ(P π̂)m

)
(dy)F1(y)

=
∑
m≥0

γm
∫
X

d
(
ρ(P π̂)m

)
dρ∗

(y)dρ∗(y)F1(y)

≤
∑
m≥0

γmc(m; π̂)ρ∗F1 ≤ C(ρ, ρ∗) ρ∗F1. (2)

in which we used the Radon-Nikodym theorem and the definition of concentrability coefficient. Let
us turn to F1 and provide an upper bound for it. We use techniques similar to [5].

L∞ result: Note that for any given x ∈ X , if for some value of ε > 0 we have π̂(x) 6= π∗(x)

and |Qπ∗(x, a) − Q̂(x, a)| ≤ ε (for both a = 1, 2), then it holds that gQ∗(x) = |Qπ∗(x, 1) −
Qπ
∗
(x, 2)| ≤ 2ε. To show it, suppose that instead gQ∗(x) = |Qπ∗(x, 1) − Qπ

∗
(x, 2)| > 2ε.

Then because of the assumption |Qπ∗(x, a)− Q̂(x, a)| ≤ ε (a = 1, 2), the ordering of Q̂(x, 1) and
Q̂(x, 2) is the same as the ordering of Q∗(x, 1) and Q∗(x, 2), which contradicts the assumption that
π̂(x) 6= π∗(x) (see Figure 2).

Denote ε0 = ‖Qπ∗ − Q̂‖∞. Whenever π̂(x) = π∗(x), the value of F1(x) is zero, so we get

F1(x) =
[
Qπ
∗
(x, π∗(x))−Qπ

∗
(x, π̂(x))

]
[I{π̂(x) = π∗(x)}+ I{π̂(x) 6= π∗(x)}]

=
[
Qπ
∗
(x, π∗(x))−Qπ

∗
(x, 1− π∗(x))

]
I{π̂(x) 6= π∗(x)}

× [I{gQ∗(x) = 0}+ I{0 < gQ∗(x) ≤ 2ε0}+ I{gQ∗(x) > 2ε0}]
≤ 0 + 2ε0 I{0 < gQ∗(x) ≤ 2ε0}+ 0.

Here we used the definition of gQ∗(x) and the fact that gQ∗(x) is no larger than 2ε0. This result
together with Assumption A1 show that ρ∗F1 ≤ 2ε0 Pρ∗ (0 < gQ∗(X) ≤ 2ε0) ≤ 2ε0 cg (2ε0)ζ .
Plugging this result in (2) finishes the proof of the first part.

Lp result: For any given x ∈ X , let D(x) = |Qπ∗(x, 1) − Q̂(x, 1)| + |Qπ∗(x, 2) − Q̂(x, 2)|.
Whenever π̂(x) 6= π∗(x), we have gQ∗(x) ≤ D(x). Similar to the previous case, we have

F1(x) =
[
Qπ
∗
(x, π∗(x))−Qπ

∗
(x, 1− π∗(x))

]
I{π̂(x) 6= π∗(x)}

× [I{gQ∗(x) = 0}+ I{0 < gQ∗(x) ≤ t}+ I{gQ∗(x) > t}]
≤ D(x) [I{0 < gQ∗(x) ≤ t}+ I{gQ∗(x) > t}]

Take expectation w.r.t. ρ∗ and use Hölder’s inequality to get

ρ∗F1 ≤ ‖D‖p,ρ∗ [Pρ∗ (0 < gQ∗(X) ≤ t)]
p−1
p + ‖D‖p,ρ∗ [Pρ∗ (gQ∗(X) > t)]

p−1
p

≤ ‖D‖p,ρ∗
(
cgt

ζ
) p−1

p + ‖D‖p,ρ∗ [Pρ∗ (D(X) > t)]
p−1
p

≤ ‖D‖p,ρ∗
(
cgt

ζ
) p−1

p +
‖D‖pp,ρ∗
tp−1

.
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where we used Assumption A1 and the definition of D(·) in the second inequality, and Markov’s

inequality in the last one. Minimize the upper bound in t to get t = c
−1
p+ζ
g ‖D‖

p
p+ζ

p,ρ∗ . This leads to

ρ∗F1 ≤ 2c
p−1
p+ζ
g ‖D‖

p(1+ζ)
p+ζ

p,ρ∗ , which in turn alongside inequality (2) and ‖D‖pp,ρ∗ ≤ 2p‖Qπ∗ − Q̂‖pp,ρ∗
proves the second part of this result.

This theorem indicates that if ‖Q̂−Q∗‖p (1 < p ≤ ∞) has an error upper bound of O(n−β) (with
β typically in the range of (0, 1/2] depending on the properties of the MDP and the estimator), we
obtain faster convergence upper bounds on the performance loss Loss(π̂; ρ) whenever the problem
has an action-gap regularity (ζ > 0).

One might compare Theorem 1 with classical upper bounds such as ‖V π̂ − V π∗‖∞ ≤ 2γ
1−γ ‖V̂ −

V ∗‖∞ (Proposition 6.1 of Bertsekas and Tsitsiklis [2]). In order to make these two bounds compa-
rable, we slightly modify the proof of our theorem to get the L∞-norm in the left hand side. The
result would be ‖V ∗ − V π̂‖∞ ≤ 21+ζcg

1−γ ‖Q̂−Q
∗‖1+ζ
∞ . If there is no action-gap assumption (ζ = 0

and cg = 1), the results are similar (except for a factor of γ and that we measure the error by the
difference in the action-value function as opposed to the value function), but when ζ > 0 the error
bound significantly improves.

4 Application of the Action-Gap Theorem in Approximate Value Iteration

The goal of this section is to show how the analysis based on the action-gap phenomenon might lead
to a tighter upper bound on the performance loss for the family of the AVI algorithms. There are
various AVI algorithms (Riedmiller [19], Ernst et al. [20], Munos and Szepesvári [11], Farahmand
et al. [12]), that work by generating a sequence of action-value function estimates (Q̂k)Kk=0, in
which Q̂k+1 is the result of approximately applying the Bellman optimality operator to the previous
estimate Q̂k, i.e., Q̂k+1 ≈ T ∗Q̂k. Let us denote the error caused at each iteration by

εk , T ∗Q̂k − Q̂k+1. (3)

The following theorem, which is based on Theorem 3 of Farahmand et al. [25], relates the per-
formance loss ‖Qπ̂(·;Q̂K) − Q∗‖1,ρ of the obtained greedy policy π̂(·; Q̂K) to the error sequence
(εk)K−1

k=0 and the action-gap assumption on the MDP. Before stating the theorem, we define the
following sequence:

αk =

{
(1−γ)

1−γK+1 γ
K−k−1 0 ≤ k < K,

(1−γ)
1−γK+1 γ

K k = K.

This sequence has αk ∝ γK−k behavior and satisfies
∑K
k=0 αk = 1.

Theorem 2 (Error Propagation for AVI). Consider an MDP (X ,A, P,R, γ) with |A| = 2 that
satisfies Assumption A1 and has C(ρ, ρ∗) < ∞. Let p ≥ 1 be a real number and K be a positive
integer. Then for any sequence (Q̂k)Kk=0 ⊂ B(X × A, Qmax) and the corresponding sequence
(εk)K−1

k=0 defined in (3), we have

Loss(π̂(·, QK); ρ) ≤ 2

(
2

1− γ

) p(1+ζ)
p+ζ

c
p−1
p+ζ
g C(ρ, ρ∗)

[
K−1∑
k=0

αk ‖εk‖pp,ρ∗ + αK(2Qmax)
p

] 1+ζ
p+ζ

.

Proof. Similar to Lemma 4.1 of Munos [24], one may derive

Q∗ − Q̂k+1 = Tπ
∗
Q∗ − Tπ

∗
Q̂k + Tπ

∗
Q̂k − T ∗Q̂k + εk ≤ γPπ

∗
(Q∗ − Q̂k) + εk

where we used the property of the Bellman optimality operator T ∗Q̂k ≥ Tπ
∗
Q̂k and the definition

of εk (3). By induction, we get

Q∗ − Q̂K ≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ − Q̂0).
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Therefore, for any p ≥ 1, the value of ‖Q∗ − Q̂K‖p,ρ∗ = ρ∗|Q∗ − Q̂K |p is upper bounded by

ρ∗|Q∗ − Q̂K |p ≤
(

1− γK+1

1− γ

)p [K−1∑
k=0

αkρ
∗(Pπ

∗
)K−k−1|εk|+ αKρ

∗(Pπ
∗
)K |Q∗ − Q̂0|

]p

≤
(

1− γK+1

1− γ

)p [K−1∑
k=0

αk ‖εk‖pp,ρ∗ + αK(2Qmax)p

]
,

where we used ρ∗(Pπ
∗
)m = ρ∗ (for any m ≥ 0) and Jensen’s inequality. The application of

Theorem 1 and noting that (1− γK+1)/(1− γ) ≤ 1/(1− γ) lead to the desired result.

Comparing this theorem with Theorem 3 of Farahmand et al. [25] is instructive. Denoting E =∑K−1
k=0 αk‖εk‖22,ρ∗ , this paper’s result indicates that the effect of the size of εk on Loss(π̂(·, Q̂K); ρ)

depends on E
1+ζ
2+ζ , while [25], which does not consider the action-gap regularity, suggests that the

effect depends on E1/2. For ζ > 0, this indicates a faster convergence rate for the performance loss
while for ζ = 0, they are the same.

5 Conclusion

This work introduced the action-gap regularity in reinforcement learning and planning problems
and analyzed the action-gap phenomenon for two-action discounted MDPs. We showed that when
the problem has a favorable action-gap regularity, quantified by the parameter ζ, the performance
loss is much smaller than the error of the estimated optimal action-value function. The action-gap
regularity, among other regularities such as the smoothness of the action-value function [13], is a
step forward to better understanding of what properties of a sequential decision-making problem
makes learning and planning easy or difficult.

There are several issues that deserve to be studied in the future. Among them is the extension of
the current framework to multi-action discounted MDPs. Also it is important to study the relation
between the parameter ζ of the action-gap regularity assumption to the properties of the MDP such
as the transition probability kernel and the reward distribution.
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